• Stars
    star
    1,179
  • Rank 39,665 (Top 0.8 %)
  • Language
  • License
    Apache License 2.0
  • Created over 7 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

YOLO9000: Better, Faster, Stronger - Real-Time Object Detection. 9000 classes!

Yolo 9000

CI

YOLO9000: Better, Faster, Stronger - Real-Time Object Detection (State of the art). Official repository of CVPR17.


Scroll down if you want to make your own video.

How to get started?

Ubuntu/Linux/Mac OS

git clone --recursive https://github.com/philipperemy/yolo-9000.git
cd yolo-9000
cat yolo9000-weights/x* > yolo9000-weights/yolo9000.weights # it was generated from split -b 95m yolo9000.weights
cd darknet 
make # Will run on CPU. For GPU support, scroll down!
./darknet detector test cfg/combine9k.data cfg/yolo9000.cfg ../yolo9000-weights/yolo9000.weights data/horses.jpg

Windows

git clone --recursive https://github.com/philipperemy/yolo-9000.git
cd yolo-9000
type yolo9000-weights\xaa yolo9000-weights\xab > yolo9000-weights\yolo9000.weights
certUtil -hashfile yolo9000-weights\yolo9000.weights MD5
cd darknet
git reset --hard b61bcf544e8dbcbd2e978ca6a716fa96b37df767

You can use the latest version of darknet by running this command in the directory yolo-9000:

git submodule foreach git pull origin master

Names of the 9k classes

Available here:

Examples

./darknet detector test cfg/combine9k.data cfg/yolo9000.cfg ../yolo9000-weights/yolo9000.weights data/horses.jpg



./darknet detector test cfg/combine9k.data cfg/yolo9000.cfg ../yolo9000-weights/yolo9000.weights data/person.jpg



The output should be something like:

layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   544 x 544 x   3   ->   544 x 544 x  32
    1 max          2 x 2 / 2   544 x 544 x  32   ->   272 x 272 x  32
    2 conv     64  3 x 3 / 1   272 x 272 x  32   ->   272 x 272 x  64
    3 max          2 x 2 / 2   272 x 272 x  64   ->   136 x 136 x  64
    4 conv    128  3 x 3 / 1   136 x 136 x  64   ->   136 x 136 x 128
    5 conv     64  1 x 1 / 1   136 x 136 x 128   ->   136 x 136 x  64
    6 conv    128  3 x 3 / 1   136 x 136 x  64   ->   136 x 136 x 128
    7 max          2 x 2 / 2   136 x 136 x 128   ->    68 x  68 x 128
    8 conv    256  3 x 3 / 1    68 x  68 x 128   ->    68 x  68 x 256
    9 conv    128  1 x 1 / 1    68 x  68 x 256   ->    68 x  68 x 128
   10 conv    256  3 x 3 / 1    68 x  68 x 128   ->    68 x  68 x 256
   11 max          2 x 2 / 2    68 x  68 x 256   ->    34 x  34 x 256
   12 conv    512  3 x 3 / 1    34 x  34 x 256   ->    34 x  34 x 512
   13 conv    256  1 x 1 / 1    34 x  34 x 512   ->    34 x  34 x 256
   14 conv    512  3 x 3 / 1    34 x  34 x 256   ->    34 x  34 x 512
   15 conv    256  1 x 1 / 1    34 x  34 x 512   ->    34 x  34 x 256
   16 conv    512  3 x 3 / 1    34 x  34 x 256   ->    34 x  34 x 512
   17 max          2 x 2 / 2    34 x  34 x 512   ->    17 x  17 x 512
   18 conv   1024  3 x 3 / 1    17 x  17 x 512   ->    17 x  17 x1024
   19 conv    512  1 x 1 / 1    17 x  17 x1024   ->    17 x  17 x 512
   20 conv   1024  3 x 3 / 1    17 x  17 x 512   ->    17 x  17 x1024
   21 conv    512  1 x 1 / 1    17 x  17 x1024   ->    17 x  17 x 512
   22 conv   1024  3 x 3 / 1    17 x  17 x 512   ->    17 x  17 x1024
   23 conv  28269  1 x 1 / 1    17 x  17 x1024   ->    17 x  17 x28269
   24 detection
Loading weights from ../yolo9000-weights/yolo9000.weights...Done!
data/horses.jpg: Predicted in 7.556429 seconds.
wild horse: 50%
Shetland pony: 84%
Aberdeen Angus: 72%
Not compiled with OpenCV, saving to predictions.png instead

The image with the bounding boxes is in predictions.png.

Browse on https://pjreddie.com/darknet/yolo/ to find how to compile it for GPU as well. It's much faster!

GPU Support

Make sure that your NVIDIA GPU is properly configured beforehand. nvcc should be in the PATH. If not, something like this should do the job:

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

Let's now compile darknet with GPU support!

cd darknet
make clean
vim Makefile # Change the first two lines to: GPU=1 and CUDNN=1. You can also use emacs or nano!
make
./darknet detector test cfg/combine9k.data cfg/yolo9000.cfg ../yolo9000-weights/yolo9000.weights data/dog.jpg

The inference should be much faster:

Loading weights from ../yolo9000-weights/yolo9000.weights...Done!
data/dog.jpg: Predicted in 0.035112 seconds.
car: 70%
canine: 56%
bicycle: 57%
Not compiled with OpenCV, saving to predictions.png instead

You can also run the command and monitor its status with nvidia-smi:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.26                 Driver Version: 375.26                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  TITAN X (Pascal)    Off  | 0000:02:00.0      On |                  N/A |
| 26%   49C    P2    76W / 250W |   4206MiB / 12189MiB |     10%      Default |
+-------------------------------+----------------------+----------------------+
|   1  TITAN X (Pascal)    Off  | 0000:04:00.0     Off |                  N/A |
| 29%   50C    P8    20W / 250W |      3MiB / 12189MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  TITAN X (Pascal)    Off  | 0000:05:00.0     Off |                  N/A |
| 31%   53C    P8    18W / 250W |      3MiB / 12189MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  TITAN X (Pascal)    Off  | 0000:06:00.0     Off |                  N/A |
| 29%   50C    P8    22W / 250W |      3MiB / 12189MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|    0     30782    C   ./darknet                                     3991MiB |
+-----------------------------------------------------------------------------+

Here, we can see that our process darknet is running on the first GPU.

NOTE: We highly recommend a recent GPU with 8GB (or more) of memory to run flawlessly. GTX 1070, GTX 1080 Ti or Titan X are a great choice!

Make your own video! (Ubuntu/Linux)

First we have to install some dependencies (OpenCV and ffmpeg):

sudo apt-get install libopencv-dev python-opencv ffmpeg
cd darknet
make clean
vim Makefile # Change the first three lines to: GPU=1, CUDNN=1 and OPENCV=1. You can also use emacs or nano!
make
./darknet detector demo cfg/combine9k.data cfg/yolo9000.cfg ../yolo9000-weights/yolo9000.weights  -prefix output <path_to_your_video_mp4> -thresh 0.15

By default the threshold is set to 0.25. It means that Yolo displays the bounding boxes of elements with a 25%+ confidence. In practice, a lower threshold means more detected items (but also more errors).

Once this command returns, we merge the output images in a video:

ffmpeg -framerate 25 -i output_%08d.jpg output.mp4

We can now safely remove the temporary generated images:

rm output_*.jpg

The final video is output.mp4.

Convert the weights to Keras

Comment the following lines in the yolo9000.cfg file:

batch=1
subdivisions=1

Then browse the instructions at:

More Repositories

1

keras-attention

Keras Attention Layer (Luong and Bahdanau scores).
Python
2,804
star
2

tensorflow-1.4-billion-password-analysis

Deep Learning model to analyze a large corpus of clear text passwords.
Python
1,902
star
3

keras-tcn

Keras Temporal Convolutional Network.
Python
1,863
star
4

keract

Layers Outputs and Gradients in Keras. Made easy.
Python
1,040
star
5

deep-speaker

Deep Speaker: an End-to-End Neural Speaker Embedding System.
Python
897
star
6

n-beats

Keras/Pytorch implementation of N-BEATS: Neural basis expansion analysis for interpretable time series forecasting.
Python
852
star
7

name-dataset

The Python library for names.
Python
810
star
8

stanford-openie-python

Stanford Open Information Extraction made simple!
Python
628
star
9

deep-learning-bitcoin

Exploiting Bitcoin prices patterns with Deep Learning.
Python
525
star
10

FX-1-Minute-Data

HISTDATA - Dataset composed of all FX trading pairs / Crude Oil / Stock Indexes. Simple API to retrieve 1 Minute data (and tick data) Historical FX Prices (up to date).
Python
477
star
11

timit

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus.
287
star
12

Deep-Learning-Tinder

Simple Tinder algorithm able to swipe left and right based on the recommendations of a pre-trained deep neural network (Machine Learning).
Python
276
star
13

financial-news-dataset

Reuters and Bloomberg
223
star
14

cond_rnn

Conditional RNNs for Tensorflow / Keras.
Python
222
star
15

my-first-bitcoin-miner

For the curious minds who want to understand how Bitcoin Blockchain works!
Python
189
star
16

expressvpn-python

ExpressVPN - Python Wrapper (IP auto switch).
Python
182
star
17

tensorflow-multi-dimensional-lstm

Multi dimensional LSTM as described in Alex Graves' Paper https://arxiv.org/pdf/0705.2011.pdf
Jupyter Notebook
155
star
18

tensorflow-class-activation-mapping

Learning Deep Features for Discriminative Localization (2016)
Python
152
star
19

easy-encryption

A very simple C++ module to encrypt/decrypt strings based on B64 and Vigenere ciper.
C++
144
star
20

Order-Book-Matching-Engine

Order Book Matching Engine for Stock Exchanges (1us latency for matching)
Java
139
star
21

tensorflow-ctc-speech-recognition

Application of Connectionist Temporal Classification (CTC) for Speech Recognition (Tensorflow 1.0 but compatible with 2.0).
Python
131
star
22

tensorflow-phased-lstm

Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences (NIPS 2016) - Tensorflow 1.0
Python
130
star
23

fractional-differentiation-time-series

As described in Advances of Machine Learning by Marcos Prado.
Python
121
star
24

amazon-reviews-scraper

Yet another multi language scraper for Amazon targeting reviews.
Python
116
star
25

lead-lag

Estimation of the lead-lag parameter from non-synchronous data.
Jupyter Notebook
108
star
26

google-news-scraper

Google News Scraper for languages like Japanese, Chinese... [VPN Support]
Python
95
star
27

stock-volatility-google-trends

Deep Learning Stock Volatility with Google Domestic Trends: https://arxiv.org/pdf/1512.04916.pdf
Python
92
star
28

mercari-python-api

The Python Mercari API.
Python
84
star
29

japanese-words-to-vectors

Word2vec (word to vectors) approach for Japanese language using Gensim and Mecab.
Python
84
star
30

Stanford-NER-Python

Stanford Named Entity Recognizer (NER) - Python Wrapper
Python
75
star
31

very-deep-convnets-raw-waveforms

Tensorflow - Very Deep Convolutional Neural Networks For Raw Waveforms - https://arxiv.org/pdf/1610.00087.pdf
Python
74
star
32

speaker-change-detection

Paper: https://arxiv.org/abs/1702.02285
Python
63
star
33

tensorflow-maxout

Maxout Networks TensorFlow implementation presented in https://arxiv.org/abs/1302.4389
Python
57
star
34

tensorflow-cnn-time-series

Feeding images of time series to Conv Nets! (Tensorflow + Keras)
Python
50
star
35

3.7-billion-passwords-tools

Tools to manipulate the data behind Collection #1 (and #2–5) - AntiPublic.
Python
48
star
36

keras-seq2seq-example

Toy Keras implementation of a seq2seq model with examples.
Python
48
star
37

tensorflow-fifo-queue-example

Example on how to use a Tensorflow Queue to feed data to your models.
Python
39
star
38

python-darknet-yolo-v4

Python to interface with Darknet Yolo V4 (multi GPU with load balancer supported).
Python
37
star
39

bitmex-liquidations

Minimal code to show how to receive the liquidations in realtime on Bitmex.
Python
33
star
40

Statistical-Arbitrage

Using Particle Markov Chain Monte Carlo
MATLAB
33
star
41

vision-api

Google Vision API made easy!
Python
30
star
42

tensorflow-grid-lstm

Implementation of the paper https://arxiv.org/pdf/1507.01526v3.pdf (Tensorflow 1.0, Python 3)
Python
29
star
43

advanced-deep-learning-keras

File repository for the course [Advanced Deep Learning with Keras]. Packt Publishing.
Jupyter Notebook
28
star
44

Facebook-Profile-Pictures-Downloader

πŸ˜† Download public profile pictures from Facebook.
Python
26
star
45

bitcoin-market-data

Largest tick market data for Bitcoin (mirror server of bitcoincharts.com).
Shell
24
star
46

beer-dataset

The biggest beer database is in this repo!
Python
23
star
47

NiceHash-api-monitoring-client

Simple NiceHash client to monitor your mining rigs. Configure alerts and emails!
Python
22
star
48

information-extraction-with-dominating-rules

Information extraction based on Stanford open IE Library and domination decision rules. http://philipperemy.github.io/information-extract/
Python
22
star
49

Market-Data

Module to retrieve realtime stock quotes of Paris stock exchange
Java
20
star
50

instant-music-playlist-downloader

Download MP3 songs from the web.
Python
20
star
51

Sentiment-Analysis-NLP

Sentiment Analysis applied to different datasets such as IMDB
Python
19
star
52

wavenet

A general TensorFlow implementation of the Wavenet network to be used to model long term sequences with less trainable parameters.
Python
18
star
53

keras-snail-attention

SNAIL Attention Block for Keras.
Python
17
star
54

which-of-your-friends-are-on-tinder

Discover which of your Facebook friends are on Tinder!
Python
16
star
55

LSTM-text-generation

Generating NEW Reuters articles from Reuters articles.
Python
16
star
56

Candlestick-Chart-Generator

Candlestick Charts in JavaScript.
JavaScript
15
star
57

keras-frn

Keras Filter Response Normalization Layer.
Python
15
star
58

keras-sde-net

Keras implementation of SDE-Net (ICML 2020).
Python
14
star
59

Peer-Group-Analysis-Clustering

Unsupervised Clustering of Time Series using Peer Group Analysis PGA
MATLAB
14
star
60

OrderBook-TWAP

Programming Test
C++
13
star
61

selenium-python-examples

Selenium examples in Python (web scraper).
Python
12
star
62

python-pubsub

A simple python implementation of a message router with many subscribers and many publishers.
Python
12
star
63

philipperemy.github.io

My blog.
SCSS
11
star
64

fxrt

Realtime FX prices from the Oanda broker.
Python
10
star
65

tensorflow-isan-rnn

Input Switched Affine Networks: An RNN Architecture Designed for Interpretability. http://proceedings.mlr.press/v70/foerster17a/foerster17a.pdf
Python
10
star
66

twitter-arxiv-sanity

Your daily "top hype" papers.
Python
9
star
67

japan-weather-forecast

Japanese Meteorological Agency (scraper + data)
Python
9
star
68

github-backup

Back up all your Github repositories in a directory.
Python
9
star
69

Leboncoin

Management of small ads (editing, publishing, deleting, re-publishing)
Java
9
star
70

Github-full-data-set

Generating GitHub data (~1M repositories May 2017).
Python
8
star
71

cocktails

Generate the best cocktail ever with Machine Learning !
Python
8
star
72

Technical-Analysis

Technical Analysis Tool based on TA Lib
C
8
star
73

Ransac-Java

Implementation of the Ransac algorithm written in Java.
Java
8
star
74

Data-Mining-Automaton

Quantitative Algobox based on Data Mining techniques
Java
8
star
75

HFT-FIX-Parser

Ultra low latency FIX Parser
7
star
76

GPU-Activity-Monitoring

Python monitoring tool for the nvidia-smi command on Linux.
Python
7
star
77

japanese-street-addresses-scraper

Scraper for Japanese street addresses (住所).
Python
7
star
78

bitstamp-realtime-order-book

Gives you low latency access to Bitstamp Realtime Order Book.
Python
7
star
79

arma-scipy-fit

Estimating coefficients of ARMA models with the Scipy package.
Python
7
star
80

urban-dictionary-transformers

Transformers applied to Urban Dictionary for fun.
Python
7
star
81

digital-setting-circles

Compatible with Raspberry Pi. Setting circles are used on telescopes equipped with an equatorial mount to find astronomical objects in the sky by their equatorial coordinates.
C++
7
star
82

binance-futures

Straightforward API endpoint to receive market data for Binance Futures.
Python
6
star
83

keras-mode-normalization

Keras Implementation of Mode Normalization (Lucas Deecke, Iain Murray, Hakan Bilen, 2018)
Python
6
star
84

Ogame-API

Ogame API
Java
6
star
85

bitflyer

Bitflyer API Realtime Feed Python.
Python
6
star
86

Kaggle-PKDD-Taxi-I

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
Python
6
star
87

ssh-failed-attempts

Tool to detect and analyze failed SSH attempts.
Python
5
star
88

Idealwine-wine-prices

API to retrieve quotes from daily wine auctions
Java
5
star
89

notifier

Receive notifications on your phone when your CLI tasks finish.
Python
5
star
90

API-Ratp

API to retrieve real time schedule times for Paris transports
5
star
91

Visual-Ballistic-Roulette-Vision

Ball and wheel zero tracking.
Python
5
star
92

Visual-Ballistic-Roulette-python

Visual Ballistic Roulette written in Python.
Python
5
star
93

tf-easy-model-saving

An easy way to load and save checkpoints in Tensorflow!
Python
5
star
94

Quantitative-Market-Data-Generator

Equity Prices Generator using Quantitative methods such as Brownian Motion
4
star
95

Monte-Carlo-Pi-Computation

This projects aims at computing PI using Monte Carlo method
4
star
96

Visual-Ballistic-Roulette-Timer-Android

Timer for Roulette written for Android
Java
4
star
97

EGAIN-pytorch

Python
4
star
98

Visual-Ballistic-Roulette-Display-Android

Android App
Java
4
star
99

record-your-internet-speed

Record your internet speed at fixed intervals.
Python
4
star
100

Martingale-Roulette-MonteCarlo

Monte Carlo simulations for Casino Roulette
MATLAB
4
star