• Stars
    star
    137
  • Rank 266,121 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated about 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Tutorials on data assimilation (DA) and the EnKF

Intro to data assimilation (DA) and the EnKF

An interactive (Jupyter notebook) tutorial. Jump right in (no installation!) by clicking the button of one of these cloud computing providers:

  • Open In Colab (requires Google login)
  • Binder (no login but can be slow to start)

Prerequisites: basics of calculus, matrices (e.g. inverses), random variables, Python (numpy).

ToC

Instructions for working locally

If you prefer, you can also run these notebooks on your own (Linux/Windows/Mac) computer. This is a bit snappier than running them online.

  1. Prerequisite: Python 3.9.
    If you're an expert, setup a python environment however you like. Otherwise: Install Anaconda, then open the Anaconda terminal and run the following commands:

    conda create --yes --name my-env python=3.9
    conda activate my-env
    python --version

    Ensure the printed version is 3.9.
    Keep using the same terminal for the commands below.

  2. Install:

    • Download and unzip (or git clone) this repository (see the green button up top)
    • Move the resulting folder wherever you like
    • cd into the folder
    • Install requirements:
      pip install -r path/to/requirements.txt
  3. Launch the Jupyter notebooks:

    • Launch the "notebook server" by executing:
      jupyter-notebook
      This will open up a page in your web browser that is a file navigator.
    • Enter the folder DA-tutorials/notebooks, and click on a tutorial (T1... .ipynb).

Developer notes

Please don't hesitate to submit issues or pull requests!

GitHub CI

Why scripts/ dir?

  • Easier to read git diffs
  • Enable importing from notebook (script mirrors)

More Repositories

1

DAPPER

Data Assimilation with Python: a Package for Experimental Research
Python
345
star
2

nansat

Scientist friendly Python toolbox for processing 2D satellite Earth observation data.
Python
171
star
3

sea_ice_drift

Sea ice drift from Sentinel-1 SAR imagery using open source feature tracking
Python
37
star
4

openwind

A python package for estimating high resolution wind from SAR images
Python
35
star
5

sentinel1denoised

Thermal noise subtraction, scalloping correction, angular correction
Jupyter Notebook
34
star
6

django-geo-spaas

GeoDjango apps for satellite data management in Geo-Scientific Platform as a Service
Python
20
star
7

s1_icetype_cnn

Retrieve sea ice type from Sentinel-1 SAR with CNN
Jupyter Notebook
20
star
8

nansat-lectures

Tutorial material on the Nansat and Nansen-Cloud systems
Jupyter Notebook
19
star
9

NERSC-HYCOM-CICE

Source code and utilities for the NERSC version of HYCOM+CICE
Fortran
8
star
10

sea_ice_type_cnn_training

Deep learning of satellite data: Use the data from satellites for machine learning (deep learning) purposes
Jupyter Notebook
5
star
11

NEDAS

NERSC Ensemble Data Assimilation System
Jupyter Notebook
5
star
12

CommonBasisFunction

Python module for calculating Common Basis Function from NetCDF files.
Python
4
star
13

django-geo-spaas-sar-doppler

Django Geo-SPaaS application for SAR Doppler shift processing
Python
3
star
14

nersc_ml_course

internal ML course/practical demonstration intern to NERSC
Jupyter Notebook
3
star
15

python-streamlet

Draw nicely floating streamlets
Python
2
star
16

AR_Tracking

Atmospheric tracking algorithm for ERA5 based on Brands 2017 and Lavers 2012.
Python
2
star
17

django-geo-spaas-noaa-ndbc

Django Geo-SPaaS application for accessing data from NOAA National Data Buoy Center
Python
2
star
18

django-geo-spaas-gnssr

Django Geo-SPaaS application for GNSS reflectrometry data
Python
2
star
19

sea_ice_drift_test_files

Test files for sea_ice_drift repository
2
star
20

zoning

Zoning of aquatic area based on objective analysis of time series of satellite observations
Python
2
star
21

SID-NN

Sea-ice Damage using NN
Jupyter Notebook
2
star
22

py-thesaurus-interface

An interface to metadata conventions for geospatial data
Python
2
star
23

diag.gnssr

An ocean surface height and wind speed intercomparison
Julia
2
star
24

Forecasting-harmful-algae-blooms--application-to-Dinophysis-acuminata-in-northern-Norway

Jupyter Notebook
2
star
25

ml-crashcourse

Jupyter Notebook
2
star
26

enkf-topaz

Fortran
2
star
27

nersc-metadata

Metadata conventions for geospatial data at NERSC
Python
1
star
28

glitter

Derive wave spectra from the optical remote sensing data
Jupyter Notebook
1
star
29

GreenSeasADC-portlet

GreenSeas Analytical Database Client a Liferay portal implemented in java and javascript. It enables a user to query a database for different parameters stored.
JavaScript
1
star
30

django-geo-spaas-harvesting

Harvest data into a GeoSPaaS catalog
Python
1
star
31

msda_crashcourse

Crash Course session on multiscale data assimilation
Jupyter Notebook
1
star
32

django-geo-spaas-rest-api

REST API for django-geo-spaas
Python
1
star
33

WIM2d

2d waves-in-ice module
MATLAB
1
star
34

MOIRA

Ridged ice detection from SAR data
Python
1
star
35

boreali

Bio-Optical REtrieval ALgorithm' for calculation of water quality parameters concentrations from satellite data
C
1
star
36

sar_image_warping

Efficient algorithm fow warping SAR imagery with motion compensation
1
star
37

capardus

This is the repo for the CAPARDUS project.
1
star
38

django-geo-spaas-processing

Processing tools for GeoSPaaS
Python
1
star
39

nansatmap

Basemap extension for easy mapping with Nansat
Python
1
star
40

crash-course-ML-slides

Jupyter Notebook
1
star
41

nansen-cloud

GeoDjango Apps for satellite data management
Python
1
star
42

django-geo-spaas-svp-drifters

Django Geo-SPaaS application for surface Lagrangian drifters from the Surface Velocity Program
Python
1
star