• Stars
    star
    1
  • Language
    Clojure
  • Created over 3 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A neural networks library for Clojure

clj-synapses

A neural networks library for Clojure!

Basic usage

Install synapses

[org.clojars.mrdimosthenis/clj-synapses "1.0.3"]

Load the net namespace

(require '[clj-synapses.net :as net])

Create a random neural network by providing its layer sizes

(def rand-network
  (net/->net
    [2 3 1]))
  • Input layer: the first layer of the network has 2 nodes.
  • Hidden layer: the second layer has 3 neurons.
  • Output layer: the third layer has 1 neuron.

Get the json of the random neural network

(net/->json
  rand-network)
;;=> "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]},
;;      {\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]},
;;      {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}],
;;     [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"

Create a neural network by providing its json

(def network
  (net/json->
    "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]},
       {\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]},
       {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}],
      [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"))

Make a prediction

(net/predict
  network
  [0.2 0.6])
;;=> [0.49131100324012494]

Train a neural network

(net/fit
  network
  0.1
  [0.2 0.6]
  [0.9])

The fit function returns a new neural network with the weights adjusted to a single observation.

Advanced usage

Fully train a neural network

In practice, for a neural network to be fully trained, it should be fitted with multiple observations, usually by reducing over a collection.

(reduce
  (fn [acc [xs ys]]
    (net/fit acc 0.1 xs ys))
  network
  [[[0.2 0.6] [0.9]]
   [[0.1 0.8] [0.2]]
   [[0.5 0.4] [0.6]]])

Boost the performance

Every function is efficient because its implementation is based on lazy list and all information is obtained at a single pass.

For a neural network that has huge layers, the performance can be further improved by using the parallel counterparts of net/predict and net/fit (net/par-predict and net/par-fit).

Create a neural network for testing

(net/->net
  [2 3 1]
  1000)

We can provide a seed to create a non-random neural network. This way, we can use it for testing.

Define the activation functions and the weights

(require '[clj-synapses.fun :as fun])

(defn activation-f
  [layer-index]
  (condp = layer-index
    0 fun/sigmoid
    1 fun/identity
    2 fun/leaky-re-lu
    3 fun/tanh))

(defn weight-init-f
  [layer-index]
  (* (inc layer-index)
     (- 1 (* 2.0 (rand)))))

(def custom-network
  (net/->net
    [4 6 8 5 3]
    activation-f
    weight-init-f))
  • The activation-f function accepts the index of a layer and returns an activation function for its neurons.
  • The weight-initf function accepts the index of a layer and returns a weight for the synapses of its neurons.

If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.

Draw a neural network

(net/->svg
  custom-network)

Network Drawing

With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.

Measure the difference between the expected and predicted values

(require '[clj-synapses.stats :as stats])

(def exp-and-pred-vals
  [[[0.0 0.0 1.0] [0.0 0.1 0.9]]
   [[0.0 1.0 0.0] [0.8 0.2 0.0]]
   [[1.0 0.0 0.0] [0.7 0.1 0.2]]
   [[1.0 0.0 0.0] [0.3 0.3 0.4]]
   [[0.0 0.0 1.0] [0.2 0.2 0.6]]])
  • Root-mean-square error
(stats/rmse
  exp-and-pred-vals)
;;=> 0.6957010852370435
  • Classification accuracy score
(stats/score
  exp-and-pred-vals)
;;=> 0.6

Load the codec namespace

(require '[clj-synapses.codec :as codec])
  • One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0.
  • Minmax normalization scales continuous attributes into values between 0.0 and 1.0.
(def setosa
  {"petal_length" "1.5"
   "petal_width"  "0.1"
   "sepal_length" "4.9"
   "sepal_width"  "3.1"
   "species"      "setosa"})

(def versicolor
  {"petal_length" "3.8"
   "petal_width"  "1.1"
   "sepal_length" "5.5"
   "sepal_width"  "2.4"
   "species"      "versicolor"})

(def virginica
  {"petal_length" "6.0"
   "petal_width"  "2.2"
   "sepal_length" "5.0"
   "sepal_width"  "1.5"
   "species"      "virginica"})

(def dataset
  [setosa
   versicolor
   virginica])

You can use a codec to encode and decode a data point.

Create a codec by providing the attributes and the data points

(def preprocessor
  (codec/->codec
    [["petal_length" false]
     ["petal_width" false]
     ["sepal_length" false]
     ["sepal_width" false]
     ["species" true]]
    dataset))
)
  • The first parameter is a vector of pairs that define the name and the type (discrete or not) of each attribute.
  • The second parameter is a collection that contains the data points.

Get the json of the codec

(codec/->json
  preprocessor)
;;=> "[{\"Case\" : \"SerializableContinuous\",
;;      \"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]},
;;     {\"Case\" : \"SerializableContinuous\",
;;      \"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]},
;;     {\"Case\" : \"SerializableContinuous\",
;;      \"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]},
;;     {\"Case\" : \"SerializableContinuous\",
;;      \"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]},
;;     {\"Case\" : \"SerializableDiscrete\",
;;      \"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]"

Create a codec by providing its json

(codec/json->
  "[{\"Case\" : \"SerializableContinuous\",
     \"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]},
    {\"Case\" : \"SerializableContinuous\",
     \"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]},
    {\"Case\" : \"SerializableContinuous\",
     \"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]},
    {\"Case\" : \"SerializableContinuous\",
     \"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]},
    {\"Case\" : \"SerializableDiscrete\",
     \"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]")

Encode a data point

(def encoded-setosa
  (codec/encode
    preprocessor
    setosa))
;; [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0]

Decode a data point

(codec/decode
  preprocessor
  encoded-setosa)
;;=> {"species"      "setosa"
;;    "sepal_width"  "3.1"
;;    "petal_width"  "0.1",
;;    "petal_length" "1.5"
;;    "sepal_length" "4.9"}