• Stars
    star
    652
  • Rank 69,062 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 5 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Pytorch implementation of JointBERT: "BERT for Joint Intent Classification and Slot Filling"

JointBERT

(Unofficial) Pytorch implementation of JointBERT: BERT for Joint Intent Classification and Slot Filling

Model Architecture

  • Predict intent and slot at the same time from one BERT model (=Joint model)
  • total_loss = intent_loss + coef * slot_loss (Change coef with --slot_loss_coef option)
  • If you want to use CRF layer, give --use_crf option

Dependencies

  • python>=3.6
  • torch==1.6.0
  • transformers==3.0.2
  • seqeval==0.0.12
  • pytorch-crf==0.7.2

Dataset

Train Dev Test Intent Labels Slot Labels
ATIS 4,478 500 893 21 120
Snips 13,084 700 700 7 72
  • The number of labels are based on the train dataset.
  • Add UNK for labels (For intent and slot labels which are only shown in dev and test dataset)
  • Add PAD for slot label

Training & Evaluation

$ python3 main.py --task {task_name} \
                  --model_type {model_type} \
                  --model_dir {model_dir_name} \
                  --do_train --do_eval \
                  --use_crf

# For ATIS
$ python3 main.py --task atis \
                  --model_type bert \
                  --model_dir atis_model \
                  --do_train --do_eval
# For Snips
$ python3 main.py --task snips \
                  --model_type bert \
                  --model_dir snips_model \
                  --do_train --do_eval

Prediction

$ python3 predict.py --input_file {INPUT_FILE_PATH} --output_file {OUTPUT_FILE_PATH} --model_dir {SAVED_CKPT_PATH}

Results

  • Run 5 ~ 10 epochs (Record the best result)
  • Only test with uncased model
  • ALBERT xxlarge sometimes can't converge well for slot prediction.
Intent acc (%) Slot F1 (%) Sentence acc (%)
Snips BERT 99.14 96.90 93.00
BERT + CRF 98.57 97.24 93.57
DistilBERT 98.00 96.10 91.00
DistilBERT + CRF 98.57 96.46 91.85
ALBERT 98.43 97.16 93.29
ALBERT + CRF 99.00 96.55 92.57
ATIS BERT 97.87 95.59 88.24
BERT + CRF 97.98 95.93 88.58
DistilBERT 97.76 95.50 87.68
DistilBERT + CRF 97.65 95.89 88.24
ALBERT 97.64 95.78 88.13
ALBERT + CRF 97.42 96.32 88.69

Updates

  • 2019/12/03: Add DistilBert and RoBERTa result
  • 2019/12/14: Add Albert (large v1) result
  • 2019/12/22: Available to predict sentences
  • 2019/12/26: Add Albert (xxlarge v1) result
  • 2019/12/29: Add CRF option
  • 2019/12/30: Available to check sentence-level semantic frame accuracy
  • 2020/01/23: Only show the result related with uncased model
  • 2020/04/03: Update with new prediction code

References

More Repositories

1

KoELECTRA

Pretrained ELECTRA Model for Korean
Python
598
star
2

R-BERT

Pytorch implementation of R-BERT: "Enriching Pre-trained Language Model with Entity Information for Relation Classification"
Python
347
star
3

KoBigBird

πŸ¦… Pretrained BigBird Model for Korean (up to 4096 tokens)
Python
202
star
4

KoBERT-Transformers

KoBERT on πŸ€— Huggingface Transformers πŸ€— (with Bug Fixed)
Python
201
star
5

DistilKoBERT

Distillation of KoBERT from SKTBrain (Lightweight KoBERT)
Python
185
star
6

GoEmotions-pytorch

Pytorch Implementation of GoEmotions 😍😒😱
Python
150
star
7

KoBERT-NER

NER Task with KoBERT (with Naver NLP Challenge dataset)
Python
94
star
8

HanBert-Transformers

HanBert on πŸ€— Huggingface Transformers πŸ€—
Python
86
star
9

nlp-arxiv-daily

Automatically Update NLP Papers Daily using Github Actions (ref: https://github.com/Vincentqyw/cv-arxiv-daily)
Python
79
star
10

transformers-android-demo

πŸ“² Transformers android examples (Tensorflow Lite & Pytorch Mobile)
Java
78
star
11

KoBERT-nsmc

Naver movie review sentiment classification with KoBERT
Python
76
star
12

KoBERT-KorQuAD

Korean MRC (KorQuAD) with KoBERT
Python
64
star
13

EncT5

Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks
Python
62
star
14

NER-Multimodal-pytorch

Pytorch Implementation of "Adaptive Co-attention Network for Named Entity Recognition in Tweets" (AAAI 2018)
Python
57
star
15

KoCharELECTRA

Character-level Korean ELECTRA Model (음절 λ‹¨μœ„ ν•œκ΅­μ–΄ ELECTRA)
Python
53
star
16

GoEmotions-Korean

Korean version of GoEmotions Dataset 😍😒😱
Python
52
star
17

hashtag-prediction-pytorch

Multimodal Hashtag Prediction with instagram data & pytorch (2nd Place on OpenResource Hackathon 2019)
Python
47
star
18

KoELECTRA-Pipeline

Transformers Pipeline with KoELECTRA
Python
40
star
19

ko_lm_dataformat

A utility for storing and reading files for Korean LM training πŸ’Ύ
Python
36
star
20

korean-ner-pytorch

NER Task with CNN + BiLSTM + CRF (with Naver NLP Challenge dataset) with Pytorch
Python
30
star
21

korean-hate-speech-koelectra

Bias, Hate classification with KoELECTRA πŸ‘Ώ
Python
26
star
22

python-template

Python template code
Makefile
21
star
23

naver-nlp-challenge-2018

NER task for Naver NLP Challenge 2018 (3rd Place)
Python
18
star
24

BIO-R-BERT

R-BERT on DDI Bio dataset with BioBERT
Python
17
star
25

kakaotrans

[Unofficial] Kakaotrans: Kakao translate API for python
Python
16
star
26

HanBert-NER

NER Task with HanBert (with Naver NLP Challenge dataset)
Python
16
star
27

py-backtrans

Python library for backtranslation (with Google Translate)
Python
12
star
28

dotfiles

Simple setup for personal dotfiles
Shell
11
star
29

monologg

Profile repository
9
star
30

ner-sample

NER Sample Code
Python
7
star
31

HanBert-nsmc

Naver movie review sentiment classification with HanBert
Python
4
star
32

torchserve-practice

Python
4
star
33

monologg.github.io

Personal Blog https://monologg.github.io
CSS
3
star