DeepStream-Yolo
NVIDIA DeepStream SDK 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration for YOLO models
Important: please export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
Future updates
- DeepStream tutorials
- Updated INT8 calibration
- Support for segmentation models
- Support for classification models
Improvements on this repository
- Support for INT8 calibration
- Support for non square models
- Models benchmarks
- Support for Darknet models (YOLOv4, etc) using cfg and weights conversion with GPU post-processing
- Support for YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, YOLOX, YOLOR, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing
- GPU bbox parser (it is slightly slower than CPU bbox parser on V100 GPU tests)
- Support for DeepStream 5.1
- Custom ONNX model parser (
NvDsInferYoloCudaEngineGet
) - Dynamic batch-size for Darknet and ONNX exported models
- INT8 calibration (PTQ) for Darknet and ONNX exported models
- New output structure (fix wrong output on DeepStream < 6.2) - it need to export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
Getting started
- Requirements
- Suported models
- Benchmarks
- dGPU installation
- Basic usage
- Docker usage
- NMS configuration
- INT8 calibration
- YOLOv5 usage
- YOLOv6 usage
- YOLOv7 usage
- YOLOv8 usage
- YOLOR usage
- YOLOX usage
- DAMO-YOLO usage
- PP-YOLOE / PP-YOLOE+ usage
- YOLO-NAS usage
- Using your custom model
- Multiple YOLO GIEs
Requirements
DeepStream 6.2 on x86 platform
- Ubuntu 20.04
- CUDA 11.8
- TensorRT 8.5 GA Update 1 (8.5.2.2)
- NVIDIA Driver 525.85.12 (Data center / Tesla series) / 525.105.17 (TITAN, GeForce RTX / GTX series and RTX / Quadro series)
- NVIDIA DeepStream SDK 6.2
- GStreamer 1.16.3
- DeepStream-Yolo
DeepStream 6.1.1 on x86 platform
- Ubuntu 20.04
- CUDA 11.7 Update 1
- TensorRT 8.4 GA (8.4.1.5)
- NVIDIA Driver 515.65.01
- NVIDIA DeepStream SDK 6.1.1
- GStreamer 1.16.2
- DeepStream-Yolo
DeepStream 6.1 on x86 platform
- Ubuntu 20.04
- CUDA 11.6 Update 1
- TensorRT 8.2 GA Update 4 (8.2.5.1)
- NVIDIA Driver 510.47.03
- NVIDIA DeepStream SDK 6.1
- GStreamer 1.16.2
- DeepStream-Yolo
DeepStream 6.0.1 / 6.0 on x86 platform
- Ubuntu 18.04
- CUDA 11.4 Update 1
- TensorRT 8.0 GA (8.0.1)
- NVIDIA Driver 470.63.01
- NVIDIA DeepStream SDK 6.0.1 / 6.0
- GStreamer 1.14.5
- DeepStream-Yolo
DeepStream 5.1 on x86 platform
- Ubuntu 18.04
- CUDA 11.1
- TensorRT 7.2.2
- NVIDIA Driver 460.32.03
- NVIDIA DeepStream SDK 5.1
- GStreamer 1.14.5
- DeepStream-Yolo
DeepStream 6.2 on Jetson platform
DeepStream 6.1.1 on Jetson platform
DeepStream 6.1 on Jetson platform
DeepStream 6.0.1 / 6.0 on Jetson platform
DeepStream 5.1 on Jetson platform
Suported models
- Darknet
- MobileNet-YOLO
- YOLO-Fastest
- YOLOv5
- YOLOv6
- YOLOv7
- YOLOv8
- YOLOR
- YOLOX
- DAMO-YOLO
- PP-YOLOE / PP-YOLOE+
- YOLO-NAS
Basic usage
1. Download the repo
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo
cfg
and weights
files from Darknet repo to the DeepStream-Yolo folder
2. Download the 3. Compile the lib
-
DeepStream 6.2 on x86 platform
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1.1 on x86 platform
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 5.1 on x86 platform
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
config_infer_primary.txt
file according to your model (example for YOLOv4)
4. Edit the [property]
...
custom-network-config=yolov4.cfg
model-file=yolov4.weights
...
NOTE: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
...
force-implicit-batch-dim=1
...
5. Run
deepstream-app -c deepstream_app_config.txt
NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
NOTE: If you want to use YOLOv2 or YOLOv2-Tiny models, change the deepstream_app_config.txt
file before run it
...
[primary-gie]
...
config-file=config_infer_primary_yoloV2.txt
...
Docker usage
-
x86 platform
nvcr.io/nvidia/deepstream:6.2-devel nvcr.io/nvidia/deepstream:6.2-triton
-
Jetson platform
nvcr.io/nvidia/deepstream-l4t:6.2-samples nvcr.io/nvidia/deepstream-l4t:6.2-triton
NOTE: To compile the
nvdsinfer_custom_impl_Yolo
, you need to install the g++ inside the containerapt-get install build-essential
NOTE: With DeepStream 6.2, the docker containers do not package libraries necessary for certain multimedia operations like audio data parsing, CPU decode, and CPU encode. This change could affect processing certain video streams/files like mp4 that include audio track. Please run the below script inside the docker images to install additional packages that might be necessary to use all of the DeepStreamSDK features:
/opt/nvidia/deepstream/deepstream/user_additional_install.sh
NMS Configuration
To change the nms-iou-threshold
, pre-cluster-threshold
and topk
values, modify the config_infer file
[class-attrs-all]
nms-iou-threshold=0.45
pre-cluster-threshold=0.25
topk=300
NOTE: Make sure to set cluster-mode=2
in the config_infer file.
Extract metadata
You can get metadata from DeepStream using Python and C/C++. For C/C++, you can edit the deepstream-app
or deepstream-test
codes. For Python, your can install and edit deepstream_python_apps.
Basically, you need manipulate the NvDsObjectMeta
(Python / C/C++) and NvDsFrameMeta
(Python / C/C++) to get the label, position, etc. of bboxes.
My projects: https://www.youtube.com/MarcosLucianoTV