• Stars
    star
    267
  • Rank 153,621 (Top 4 %)
  • Language
    Python
  • Created almost 8 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

3D convolutional neural network for video classification

3DCNN

Implementation of 3D Convolutional Neural Network for video classification using Keras(with tensorflow as backend).

Description

This code requires UCF-101 dataset. This code generates graphs of accuracy and loss, plot of model, result and class names as txt file and model as hd5 and json.

You can use visualize_input.py to make an input image which will maximize the specific output. This code is able to maximize a layer's output of any classification model. (Only dense layer convolutional layer(2D/3D) and pooling layer(2D/3D) are allowed.)

Requirements

python3
opencv3 (with ffmpeg), keras, numpy, tqdm

Options

Options of 3dcnn.py are as following:
--batch batch size, default is 128
--epoch the number of epochs, default is 100
--videos a name of directory where dataset is stored, default is UCF101
--nclass the number of classes you want to use, default is 101
--output a directory where the results described above will be saved
--color use RGB image or grayscale image, default is False
--skip get frames at interval or continuously, default is True
--depth the number of frames to use, default is 10

Options of 3dcnn_ensemble.py are almost same as those of 3dcnn.py. You can use --nmodel option to set the number of models.

Options of visualize_input.py are as follows:
--model saved json file of a model
--weights saved hd5 file of a model weights
--layernames True to show layer names of a model, default is False
--name the name of a layer which will be maximized
--index the index of a layer output which will be maximized
--iter the number of iteration, default is 20

You can see more information by using --help option

Demo

You can execute like the following:

python 3dcnn.py --batch 32 --epoch 50 --videos dataset/ --nclass 10 --output 3dcnnresult/ --color True --skip False --depth 15

You can generate the input image which maximizes 0th output of layer named 'dense_2' like this:

python visualize_input.py -m result_cnn_10class/ucf101cnnmodel.json -w result_cnn_10class/ucf101cnnmodel.hd5 -n 'dense_2' -i 0 --iter 100

When I got the results in result_cnn_10class, result_cnn_101class, result_3dcnn_10class, result_3dcnn_101class , result_ensemble, I set the options like the follows:

nclass batch epoch color skip depth nmodel accuracy
2dcnn.py 10 128 100 False True - - 0.844
2dcnn.py 101 128 100 False True - - 0.558
3dcnn.py 10 128 100 False True 10 - 0.900
3dcnn.py 101 128 100 False True 10 - 0.692
3dcnn_ensemble.py 101 128 100 False True 10 10 0.876

Other files

2dcnn.py 2DCNN model
display.py get example images from the dataset.
videoto3d.py get frames from a video, extract a class name from filename of a video in UCF101.