• Stars
    star
    113
  • Rank 310,115 (Top 7 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created almost 3 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

KakaoBrain pytorch pytorch-lightning

BaSSL

This is an official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL) [arxiv] [demo in modelscope]

  • The method is a self-supervised learning algorithm that learns a model to capture contextual transition across boundaries during the pre-training stage. To be specific, the method leverages pseudo-boundaries and proposes three novel boundary-aware pretext tasks effective in maximizing intra-scene similarity and minimizing inter-scene similarity, thus leading to higher performance in video scene segmentation task.

1. Environmental Setup

We have tested the implementation on the following environment:

  • Python 3.7.7 / PyTorch 1.7.1 / torchvision 0.8.2 / CUDA 11.0 / Ubuntu 18.04

Also, the code is based on pytorch-lightning (==1.3.8) and all necessary dependencies can be installed by running following command.

$ pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install -r requirements.txt

# (optional) following installation of pillow-simd sometimes brings faster data loading.
$ pip uninstall pillow && CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

2. Prepare Data

We provide data download script for raw key-frames of MovieNet-SSeg dataset, and our re-formatted annotation files applicable for BaSSL. FYI, our script will automatically download and decompress data---1) key-frames (160G), 2) annotations (200M)---into <path-to-root>/bassl/data/movienet.

# download movienet data
$ cd <path-to-root>
$ bash script/download_movienet_data.sh

In addition, download annotation files from MovieNet-SSeg google drive and put the folder scene318 into <path-to-root>/bassl/data/movienet. Then, the data folder structure will be as follows:

# <path-to-root>/bassl/data
movienet
│─ 240P_frames
β”‚    │─ tt0120885                 # movie id (or video id)
β”‚    β”‚    │─ shot_0000_img_0.jpg
β”‚    β”‚    │─ shot_0000_img_1.jpg
β”‚    β”‚    │─ shot_0000_img_2.jpg  # for each shot, three key-frames are given.
|    |    :
β”‚    :    │─ shot_1256_img_2.jpg
β”‚    |    
β”‚    │─ tt1093906
β”‚         │─ shot_0000_img_0.jpg
β”‚         │─ shot_0000_img_1.jpg
β”‚         │─ shot_0000_img_2.jpg
|         :
β”‚         │─ shot_1270_img_2.jpg
β”‚
│─anno
     │─ anno.pretrain.ndjson
     │─ anno.trainvaltest.ndjson
     │─ anno.train.ndjson
     │─ anno.val.ndjson
     │─ anno.test.ndjson
     │─ vid2idx.json
│─scene318
     │─ label318
     │─ meta
     │─ shot_movie318

3. Train (Pre-training and Fine-tuning)

We use Hydra to provide flexible training configurations. Below examples explain how to modify each training parameter for your use cases.
We assume that you are in <path-to-root> (i.e., root of this repository).

3.1. Pre-training

(1) Pre-training BaSSL
Our pre-training is based on distributed environment (multi-GPUs training) using ddp environment supported by pytorch-lightning.
The default setting requires 8-GPUs (of V100) with a batch of 256. However, you can set the parameter config.DISTRIBUTED.NUM_PROC_PER_NODE to the number of gpus you can use or change config.TRAIN.BATCH_SIZE.effective_batch_size. You can run a single command cd bassl; bash ../scripts/run_pretrain_bassl.sh or following full command:

cd <path-to-root>/bassl
EXPR_NAME=bassl
WORK_DIR=$(pwd)
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/pretrain/main.py \
    config.EXPR_NAME=${EXPR_NAME} \
    config.DISTRIBUTED.NUM_NODES=1 \
    config.DISTRIBUTED.NUM_PROC_PER_NODE=8 \
    config.TRAIN.BATCH_SIZE.effective_batch_size=256

Note that the checkpoints are automatically saved in bassl/pretrain/ckpt/<EXPR_NAME> and log files (e.g., tensorboard) are saved in `bassl/pretrain/logs/<EXPR_NAME>.

(2) Running with various loss combinations
Each objective can be turned on and off independently.

cd <path-to-root>/bassl
EXPR_NAME=bassl_all_pretext_tasks
WORK_DIR=$(pwd)
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/pretrain/main.py \
    config.EXPR_NAME=${EXPR_NAME} \
    config.LOSS.shot_scene_matching.enabled=true \
    config.LOSS.contextual_group_matching.enabled=true \
    config.LOSS.pseudo_boundary_prediction.enabled=true \
    config.LOSS.masked_shot_modeling.enabled=true

(3) Pre-training shot-level pre-training baselines
Shot-level pre-training methods can be trained by setting config.LOSS.sampling_method.name as one of followings:

  • instance (Simclr_instance), temporal (Simclr_temporal), shotcol (Simclr_NN).
    And, you can choose two more options: bassl (BaSSL), and bassl+shotcol (BaSSL+ShotCoL).
    Below example is for Simclr_NN, i.e., ShotCoL. Choose your favorite option ;)
cd <path-to-root>/bassl
EXPR_NAME=Simclr_NN
WORK_DIR=$(pwd)
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/pretrain/main.py \
    config.EXPR_NAME=${EXPR_NAME} \
    config.LOSS.sampleing_method.name=shotcol \

3.2. Fine-tuning

(1) Simple running a single command to fine-tune pre-trained models
Firstly, download the checkpoints provided in Model Zoo section and move them into bassl/pretrain/ckpt.

cd <path-to-root>/bassl

# for fine-tuning BaSSL (10 epoch)
bash ../scripts/finetune_bassl.sh

# for fine-tuning Simclr_NN (i.e., ShotCoL)
bash ../scripts/finetune_shot-level_baseline.sh

The full process (i.e., extraction of shot-level representation followed by fine-tuning) is described in below.

(2) Extracting shot-level features from shot key-frames
For computational efficiency, we pre-extract shot-level representation and then fine-tune pre-trained models.
Set LOAD_FROM to EXPR_NAME used in the pre-training stage and change config.DISTRIBUTED.NUM_PROC_PER_NODE as the number of GPUs you can use. Then, the extracted shot-level features are saved in <path-to-root>/bassl/data/movienet/features/<LOAD_FROM>.

cd <path-to-root>/bassl
LOAD_FROM=bassl
WORK_DIR=$(pwd)
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/pretrain/extract_shot_repr.py \
	config.DISTRIBUTED.NUM_NODES=1 \
	config.DISTRIBUTED.NUM_PROC_PER_NODE=1 \
	+config.LOAD_FROM=${LOAD_FROM}

(3) Fine-tuning and evaluation

cd <path-to-root>/bassl
WORK_DIR=$(pwd)

# Pre-training methods: bassl and bassl+shotcol
# which learn CRN network during the pre-training stage
LOAD_FROM=bassl
EXPR_NAME=transfer_finetune_${LOAD_FROM}
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/finetune/main.py \
	config.TRAIN.BATCH_SIZE.effective_batch_size=1024 \
	config.EXPR_NAME=${EXPR_NAME} \
	config.DISTRIBUTED.NUM_NODES=1 \
	config.DISTRIBUTED.NUM_PROC_PER_NODE=1 \
	config.TRAIN.OPTIMIZER.lr.base_lr=0.0000025 \
	+config.PRETRAINED_LOAD_FROM=${LOAD_FROM}

# Pre-training methods: instance, temporal, shotcol
# which DO NOT learn CRN network during the pre-training stage
# thus, we use different base learning rate (determined after hyperparameter search)
LOAD_FROM=shotcol_pretrain
EXPR_NAME=finetune_scratch_${LOAD_FROM}
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/finetune/main.py \
	config.TRAIN.BATCH_SIZE.effective_batch_size=1024 \
	config.EXPR_NAME=${EXPR_NAME} \
	config.DISTRIBUTED.NUM_NODES=1 \
	config.DISTRIBUTED.NUM_PROC_PER_NODE=1 \
	config.TRAIN.OPTIMIZER.lr.base_lr=0.000025 \
	+config.PRETRAINED_LOAD_FROM=${LOAD_FROM}

4. Model Zoo

We provide pre-trained checkpoints trained in a self-supervised manner.
After fine-tuning with the checkpoints, the models will give scroes that are almost similar to ones shown below.

Method AP Checkpoint (pre-trained)
SimCLR (instance) 51.51 download
SimCLR (temporal) 50.05 download
SimCLR (NN) 51.17 download
BaSSL (10 epoch) 56.26 download
BaSSL (40 epoch) 57.40 download

5. Citation

If you find this code helpful for your research, please cite our paper.

@article{mun2022boundary,
  title={Boundary-aware Self-supervised Learning for Video Scene Segmentation},
  author={Mun, Jonghwan and Shin, Minchul and Han, Gunsu and
          Lee, Sangho and Ha, Sungsu and Lee, Joonseok and Kim, Eun-sol},
  journal={arXiv preprint arXiv:2201.05277},
  year={2022}
}

6. Contact for Issues

Jonghwan Mun, [email protected]
Minchul Shin, [email protected]

7. License

This project is licensed under the terms of the Apache License 2.0. Copyright 2021 Kakao Brain Corp. All Rights Reserved.

More Repositories

1

fast-autoaugment

Official Implementation of 'Fast AutoAugment' in PyTorch.
Python
1,587
star
2

nerf-factory

An awesome PyTorch NeRF library
Python
1,265
star
3

pororo

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing
Python
1,252
star
4

coyo-dataset

COYO-700M: Large-scale Image-Text Pair Dataset
Python
1,062
star
5

kogpt

KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)
Python
1,000
star
6

torchgpipe

A GPipe implementation in PyTorch
Python
776
star
7

karlo

Python
679
star
8

rq-vae-transformer

The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)
Jupyter Notebook
669
star
9

mindall-e

PyTorch implementation of a 1.3B text-to-image generation model trained on 14 million image-text pairs
Python
630
star
10

word2word

Easy-to-use word-to-word translations for 3,564 language pairs.
Python
350
star
11

torchlars

A LARS implementation in PyTorch
Python
326
star
12

g2pm

A Neural Grapheme-to-Phoneme Conversion Package for Mandarin Chinese Based on a New Open Benchmark Dataset
Python
326
star
13

kor-nlu-datasets

KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding
283
star
14

trident

A performance library for machine learning applications.
Python
176
star
15

autoclint

A specially designed light version of Fast AutoAugment
Python
170
star
16

sparse-detr

PyTorch Implementation of Sparse DETR
Python
150
star
17

hotr

Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)
Python
132
star
18

kortok

The code and models for "An Empirical Study of Tokenization Strategies for Various Korean NLP Tasks" (AACL-IJCNLP 2020)
Python
114
star
19

scrl

PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)
Python
108
star
20

flame

Official implementation of the paper "FLAME: Free-form Language-based Motion Synthesis & Editing"
Python
103
star
21

brain-agent

Brain Agent for Large-Scale and Multi-Task Agent Learning
Python
92
star
22

helo-word

Team Kakao&Brain's Grammatical Error Correction System for the ACL 2019 BEA Shared Task
Python
88
star
23

jejueo

Jejueo Datasets for Machine Translation and Speech Synthesis
Python
74
star
24

solvent

Python
66
star
25

noc

Jupyter Notebook
44
star
26

cxr-clip

Python
43
star
27

expgan

Python
41
star
28

autowu

Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)
Python
39
star
29

nvs-adapter

Python
33
star
30

ginr-ipc

The official implementation of Generalizable Implicit Neural Representations with Instance Pattern Composers(CVPR’23 highlight).
Python
30
star
31

coyo-vit

ViT trained on COYO-Labeled-300M dataset
Python
28
star
32

irm-empirical-study

An Empirical Study of Invariant Risk Minimization
Python
28
star
33

coyo-align

ALIGN trained on COYO-dataset
Python
25
star
34

magvlt

The official implementation of MAGVLT: Masked Generative Vision-and-Language Transformer (CVPR'23)
Python
23
star
35

hqtransformer

Locally Hierarchical Auto-Regressive Modeling for Image Generation (HQ-Transformer)
Jupyter Notebook
21
star
36

CheXGPT

Python
18
star
37

learning-loss-for-tta

"Learning Loss for Test-Time Augmentation (NeurIPS 2020)"
Python
9
star
38

stg

Official implementation of Selective Token Generation (COLING'22)
Jupyter Notebook
8
star
39

leco

Official implementation of LECO (NeurIPS'22)
Python
6
star
40

bc-hyperopt-example

brain cloud hyperopt example (mnist)
Python
3
star