• This repository has been archived on 23/Jul/2024
  • Stars
    star
    1,265
  • Rank 37,188 (Top 0.8 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 2 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An awesome PyTorch NeRF library

NeRF-Factory: An awesome PyTorch NeRF collection

logo

Project Page | Checkpoints

Attention all NeRF researchers! We are here with a PyTorch-reimplemented large-scale NeRF library. Our library is easily extensible and usable.

animated animated

This contains PyTorch-implementation of 7 popular NeRF models.

and also 7 popular NeRF datasets.

You only need to do for running the code is:

python3 -m run --ginc configs/[model]/[data].gin
# ex) python3 -m run --ginc configs/nerf/blender.gin

We also provide convenient visualizers for NeRF researchers.

Contributor

This project is created and maintained by Yoonwoo Jeong, Seungjoo Shin, and Kibaek Park.

Requirements

conda create -n nerf_factory -c anaconda python=3.8
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
pip3 install -r requirements.txt

## Optional(Plenoxel)
pip3 install .

## Or you could directly build from nerf_factory.yml
conda env create --file nerf_factory.yml

Command

python3 -m run --ginc configs/[model]/[data].gin
# ex) python3 -m run --ginc configs/nerf/blender.gin

Preparing Dataset

We provide an automatic download script for all datasets.

# NeRF-blender dataset
bash scripts/download_data.sh nerf_synthetic
# NeRF-LLFF(NeRF-Real) dataset
bash scripts/download_data.sh nerf_llff
# NeRF-360 dataset
bash scripts/download_data.sh nerf_real_360
# Tanks and Temples dataset
bash scripts/download_data.sh tanks_and_temples
# LF dataset
bash scripts/download_data.sh lf
# NeRF-360-v2 dataset
bash scripts/download_data.sh nerf_360_v2
# Shiny-blender dataset
bash scripts/download_data.sh shiny_blender

Run the Code!

A very simple script to run the code.

Training Code

A script for running the training code.

python3 run.py --ginc configs/[model]/[data].gin --scene [scene]

## ex) run training nerf on chair scene of blender dataset
python3 run.py --ginc configs/nerf/blender.gin --scene chair

Evaluation Code

A script for running the evaluation code only.

python3 run.py --ginc configs/[model]/[data].gin --scene [scene] \
--ginb run.run_train=False

## ex) run evaluating nerf on chair scene of blender dataset
python3 run.py --ginc configs/nerf/blender.gin --scene chair \
--ginb run.run_train=False

Custom

How to add the custom dataset and the custom model in NeRF-Factory?

Custom Dataset

  • Add files of the custom dataset on ./data/[custom_dataset].
  • Implement a dataset loader code on ./src/data/data_util/[custom_dataset].py.
  • Implement a custom dataset class LitData[custom_dataset] on ./src/data/litdata.py.
  • Add option of selecting the custom dataset on the function def select_dataset() of ./utils/select_option.py.
  • Add gin config file for each model as ./configs/[model]/[custom_dataset].gin.

Custom Model

  • Implement a custom model code on ./src/model/[custom_model]/model.py.
  • Implement a custom model's helper code on ./src/model/[custom_model]/helper.py.
  • [Optional] If you need more code files for the custom model, you can add them in ./src/model/[custom_model]/.- Add option of selecting the custom model on the function def select_model() of ./utils/select_option.py.
  • Add gin config file for each model as ./configs/[custom_model]/[dataset].gin.

License

Copyright (c) 2022 POSTECH, KAIST, and Kakao Brain Corp. All Rights Reserved. Licensed under the Apache License, Version 2.0 (see LICENSE for details)

More Repositories

1

fast-autoaugment

Official Implementation of 'Fast AutoAugment' in PyTorch.
Python
1,587
star
2

pororo

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing
Python
1,252
star
3

coyo-dataset

COYO-700M: Large-scale Image-Text Pair Dataset
Python
1,062
star
4

kogpt

KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)
Python
1,000
star
5

torchgpipe

A GPipe implementation in PyTorch
Python
776
star
6

karlo

Python
679
star
7

rq-vae-transformer

The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)
Jupyter Notebook
669
star
8

mindall-e

PyTorch implementation of a 1.3B text-to-image generation model trained on 14 million image-text pairs
Python
630
star
9

word2word

Easy-to-use word-to-word translations for 3,564 language pairs.
Python
350
star
10

torchlars

A LARS implementation in PyTorch
Python
326
star
11

g2pm

A Neural Grapheme-to-Phoneme Conversion Package for Mandarin Chinese Based on a New Open Benchmark Dataset
Python
326
star
12

kor-nlu-datasets

KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding
283
star
13

trident

A performance library for machine learning applications.
Python
176
star
14

autoclint

A specially designed light version of Fast AutoAugment
Python
170
star
15

sparse-detr

PyTorch Implementation of Sparse DETR
Python
150
star
16

hotr

Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)
Python
132
star
17

kortok

The code and models for "An Empirical Study of Tokenization Strategies for Various Korean NLP Tasks" (AACL-IJCNLP 2020)
Python
114
star
18

bassl

Python
113
star
19

scrl

PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)
Python
108
star
20

flame

Official implementation of the paper "FLAME: Free-form Language-based Motion Synthesis & Editing"
Python
103
star
21

brain-agent

Brain Agent for Large-Scale and Multi-Task Agent Learning
Python
92
star
22

helo-word

Team Kakao&Brain's Grammatical Error Correction System for the ACL 2019 BEA Shared Task
Python
88
star
23

jejueo

Jejueo Datasets for Machine Translation and Speech Synthesis
Python
74
star
24

solvent

Python
66
star
25

noc

Jupyter Notebook
44
star
26

cxr-clip

Python
43
star
27

expgan

Python
41
star
28

autowu

Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)
Python
39
star
29

nvs-adapter

Python
33
star
30

ginr-ipc

The official implementation of Generalizable Implicit Neural Representations with Instance Pattern Composers(CVPR’23 highlight).
Python
30
star
31

coyo-vit

ViT trained on COYO-Labeled-300M dataset
Python
28
star
32

irm-empirical-study

An Empirical Study of Invariant Risk Minimization
Python
28
star
33

coyo-align

ALIGN trained on COYO-dataset
Python
25
star
34

magvlt

The official implementation of MAGVLT: Masked Generative Vision-and-Language Transformer (CVPR'23)
Python
23
star
35

hqtransformer

Locally Hierarchical Auto-Regressive Modeling for Image Generation (HQ-Transformer)
Jupyter Notebook
21
star
36

CheXGPT

Python
18
star
37

learning-loss-for-tta

"Learning Loss for Test-Time Augmentation (NeurIPS 2020)"
Python
9
star
38

stg

Official implementation of Selective Token Generation (COLING'22)
Jupyter Notebook
8
star
39

leco

Official implementation of LECO (NeurIPS'22)
Python
6
star
40

bc-hyperopt-example

brain cloud hyperopt example (mnist)
Python
3
star