• Stars
    star
    1,437
  • Rank 32,762 (Top 0.7 %)
  • Language
    C
  • Created over 13 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

For more information, please see http://smartos.org/ For any questions that aren't answered there, please join the SmartOS discussion list: http://smartos.org/smartos-mailing-list/

Quickstart

git clone https://github.com/TritonDataCenter/smartos-live.git
cd smartos-live
./configure
gmake world
gmake live
ls output/

Overview

This repository is smartos-live, which builds a SmartOS platform image containing the illumos core OS components; a set of "extra" mostly third-party software required by illumos, by other SmartOS software, or for system management; and a collection of utilities comprising SmartOS-specific functionality found in projects/local/.

Contents

Community

You can interact with the SmartOS community in a number of ways. This includes:

  • The smartos-discuss mailing list. If you wish to send mail to the list you'll need to join, but you can view and search the archives online without being a member.

  • In the #smartos IRC channel on the Libera Chat IRC network.

Bug Reports

If you encounter a problem, please reach out for assistance. You can file a GitHub issue for any problem you encounter. When filing a bug, please include the platform version that you're running and a description of the problem.

If there was an operating system crash dump or a program generated a core dump, it would be greatly appreciated if you could make that available.

While there are multiple repositories that make up the smartos-live image, if you're in doubt about where to file a bug or just are uncertain, please file it on the SmartOS live issue tracker and we'll help from there. It's more important that the bug is recorded and we can work on solving it than it end up in the right location.

Components of SmartOS

SmartOS is made up of several different components. These components are:

smartos-live

The smartos-live repository is the root of SmartOS. It has logic for how to build all of the different components that make up SmartOS and has components that are specific to the SmartOS live image environment. For example, it has tools like vmadm and imgadm.

illumos-joyent

The illumos-joyent repository is the core of the operating system. It represents SmartOS's child of illumos-gate. This has the core kernel, libraries, and user commands.

The illumos-joyent code can be found in the smartos-live tree under projects/illumos. The SmartOS build only supports using illumos-joyent and not stock illumos-gate.

illumos-extra

The illumos-extra repository contains a few different sets of software:

  1. Software which is held at a specific version that is required for the platform to build. For example, GNU binutils fall into this category.
  2. Software which is required for illumos-gate to build and is required at run time. This category includes things like OpenSSL and libz.
  3. Extra software that we want to exist in the platform image at run time. This category includes software like bash, curl, and Node.js.

illumos-extra serves to make sure that we have the specific versions of software that we require at build time. The theory is that given a basic working build machine of any illumos vintage, we can build the rest of the platform and get the specific patched versions of software we need from illumos-extra.

The illumos-extra code can be found in the smartos-live tree under projects/illumos-extra.

illumos-extra design

illumos-extra operates in a different fashion from the rest of the tree. Because it consists solely of third-party software, it operates in a different way. This software is often built using the GNU autotools.

Rather than modifying the software directly like we do in the rest of the platform, we instead maintain a series of patches that we apply to a stock release of the software, conventionally in a directory named Patches.

illumos-extra will build the software at least once, but possibly more times. For example, most software doesn't support building both a 32-bit and 64-bit version of itself. We also build software that's required to build the platform image against the host-system during a bootstrap phase. For each version, we'll create a directory that uses the name and version of the software appended with the bitness of the version and whether or not it's the bootstrap phase. For example, if we were building zlib-1.2.3.tar.gz, we'd see the following directories:

$ ls -1 libz/
...
zlib-1.2.3-32
zlib-1.2.3-32strap
zlib-1.2.3-64
zlib-1.2.3-64strap
zlib-1.2.3.tar.gz
...

Finally, while many tarballs are part of the repository, to keep down the ever increasing size of the repository, we are transitioning to having the contents stored externally and downloaded initially as part of the set up process.

Local Projects

There are a collection of extra projects that live in separate repositories. Each of these projects lives in the projects/local directory of the smartos-live root. The local projects system defines a series of Makefile targets that a local project is required to implement.

The current set of local projects include:

Building SmartOS

Setting up a Build Environment

The first step when building is to set up a build environment. The SmartOS build requires building on SmartOS. As of the base-64-lts 21.4.0 build image, the SmartOS Platform Image must be 20211007 or newer. This can be done in VMware, on an existing SmartOS machine, or other virtualization. You must build inside of a non-global zone.

Minimum Platform Image

As of OS-8412, OpenSSH requires OpenSSL 3.0 to build, which means that you'll need to use a platform that includes OS-8334. Release builds as of 20211216T012707Z will satisfy this requirement.

Importing the Zone Image

The SmartOS build currently uses the base-64-lts 21.4.0 image which has a UUID of c8715b60-7e98-11ec-82d1-03d16599f529 . To import the image, you should run the imgadm command from the global zone:

# imgadm import c8715b60-7e98-11ec-82d1-03d16599f529
Importing c8715b60-7e98-11ec-82d1-03d16599f529 ([email protected]) from "https://images.smartos.org"
Gather image c8715b60-7e98-11ec-82d1-03d16599f529 ancestry
Must download and install 1 image (148.6 MiB)
Download 1 image     [=======================>] 100% 148.62MB 497.77KB/s  5m 5s
Downloaded image c8715b60-7e98-11ec-82d1-03d16599f529 (148.6 MiB)
...82d1-03d16599f529 [=======================>] 100% 148.62MB   5.12MB/s    29s
Imported image c8715b60-7e98-11ec-82d1-03d16599f529 ([email protected])
#

Creating the Zone

To create a zone, you need to create a joyent branded zone with vmadm. We recommend that the zone have the following attributes:

  • The brand set to "joyent"
  • The image_uuid set to "c8715b60-7e98-11ec-82d1-03d16599f529"
  • At least 25 GiB of disk space specified in the quota property
  • At least 2-4 GiB of DRAM specified in the max-physical-memory property
  • 1.5-2x the amount of DRAM in the max_swap property
  • At least 1 network interface that can reach the Internet
  • The fs_allowed property set to "ufs,pcfs,tmpfs"

For more information, please see the vmadm manual page and its EXAMPLES section. Once written, you can validate your JSON file by running vmadm validate. For example, if your JSON file was in /var/tmp/build.json you would run:

# vmadm validate create -f /var/tmp/build.json

If there are problems, then it will tell you which portions of the JSON are incorrect and need to be fixed. You can always check if a file is valid JSON by using the json command as json --validate -f /var/tmp/build.json

Once that's done, then you can create the VM using vmadm as:

# vmadm create -f /var/tmp/build.json

Setting Up the Zone

While you can build as the root user, we recommend that you create a user to do your day to day work as. If you do create that user there are two things that you should do:

  1. Make sure that the user has the 'Primary Administrator' privilege. There are occasional parts of the build that require administrator privileges and these will use pfexec to do so. To add a user to the primary administrator role, as the root user in the zone, you should run:
# usermod -P 'Primary Administrator' <user>
  1. Make sure that the user's shell is set to /bin/bash. There have occasionally been build issues when using different shells. Ultimately, those are bugs. If you do use another shell and encounter issues, please tell us.

The final prerequisite is to make sure that git is installed. To do that, you should run as your user:

$ pfexec pkgin -y in git
...
$

With this, you should be all set in your new environment. The normal build process will make sure that any required packages are installed.

If you're running any of the release-engineering targets, the build will also require Manta tools and updates-imgadm to be available on $PATH, but most users are unlikely to need to build these targets.

Basic Build Pattern

Once the build zone has been configured, you can kick off a build in a few easy steps:

$ git clone https://github.com/TritonDataCenter/smartos-live
$ cd smartos-live
$ ./configure
$ gmake live

This will produce a tarball that contains the platform. The platform will be placed in the output directory and a symlink to the latest tarball will be there.

The configure script takes a few options that allow you to do a DEBUG build, configure shadow compilers, etc. See ./configure -h.

Build Outputs

By default, running gmake live produces a directory and a tarball in the output directory. This can be used in Triton with the sdcadm commands and can be used to boot through ipxe or other network boot loaders.

It is also possible to create ISO and USB images. These images default to the VGA console. To make an ISO or USB image you can run from the root of the smartos-live repository:

$ ./tools/build_boot_image -r $ROOT
$ ./tools/build_boot_image -I -r $ROOT
$ ./tools/build_boot_image -I -r $ROOT -c ttyb # sets the default console to ttyb

These will create images in the output-usb and output-iso directories based on the latest platform image.

Build Order and Common Targets

When you kick off a smartos-live build (running gmake live), it will build components in the following order:

  1. illumos-extra bootstrap phase against the build system
  2. illumos-joyent
  3. illumos-extra main phase against the proto area
  4. smartos-live src against the proto area
  5. local projects against the proto area
  6. assemble packaging manifests
  7. assemble the platform tgz

If you run gmake world instead of gmake live, then the build will stop after all of the components have been built.

The following summarizes the primary targets used on a day to day basis:

  • world: Builds all the components
  • live: Assembles the live image from the built components
  • check: Runs various style and lint tools on code in smartos-live
  • clean: Removes built artifacts and intermediate objects
  • update: Updates all of the repositories to the latest
  • iso: Builds a CD-ROM ISO image, defaulting to the VGA console
  • usb: Builds a FAT 32 USB image, defaulting to the VGA console

Build Targets for Release Engineering

This section is likely to only interest users who perform release builds of SmartOS, or the Triton Platform Image.

When performing release builds, the following are convenient targets which encapsulate the entire release process for a specific Triton and/or SmartOS build variety:

  • common-release: depends on check, live and pkgsrc targets and needs to be run before a subsequent make invocation of any of the -release targets below
  • smartos-release: builds, publishes and uploads SmartOS artifacts
  • triton-release: builds, publishes and uploads a Triton platform image
  • triton-and-smartos-release: all of the above

The following are used by the targets listed above as part of the release engineering process when publishing release builds of the SmartOS and Triton platform image. There are varieties of each target for both build flavors.

  • *-publish: stage bits from the output directory, preparing for upload
  • *-bits-upload: upload bits to either Manta, a remote filesystem and optionally, a Triton imgapi instance, defaulting to updates.tritondatacenter.com
  • *-bits-upload-latest: as above, except attempt to re-upload the latest built bits, useful in case of interrupted uploads

The bits-upload tool comes from eng.git which the build pulls in via the deps/eng "git submodule" from the top-level of the workspace.

The upload can be influenced by the following shell environment variables:

  • ENGBLD_DEST_OUT_PATH: The path where we wish to upload bits. This is assumed to be relative to $MANTA_USER if using a Manta path. Otherwise this can be set to a local (or NFS) path where we wish to upload build arifacts.
  • ENGBLD_BITS_UPLOAD_LOCAL: If set to true, this causes us to simply cp(1) bits to $ENGBLD_DEST_OUT_PATH rather than upload using Manta tools.
  • ENGBLD_BITS_UPLOAD_IMGAPI: If set to true, this causes the build to also attempt to upload any Triton images found in the output/bits directory to an imgapi instance, which defaults to updates.tritondatacenter.com.

For Manta and imgapi uploads, the following environment variables are used to configure the upload:

  • MANTA_USER
  • MANTA_KEY_ID
  • MANTA_URL
  • UPDATES_IMGADM_URL
  • UPDATES_IMGADM_IDENTITY
  • UPDATES_IMGADM_CHANNEL
  • UPDATES_IMGADM_USER

For details on the default values of these variables, and how they are used, see bits-upload.sh

Finally, release engineers may find the script build_jenkins useful, intended to be run directly as part of a Jenkins job, invoking the targets above.

Common Tasks

Cleaning Up

To clean out all the built contents of the various repositories, there is a top level 'clean' target. This will remove all of the built artifacts, the proto area, and will descend into each component and clean them up. For example, this will end up running dmake clobber in illumos-joyent to clean up all of its contents.

Occasionally, there are bugs which cause some files to be missed. If you encounter that, you can use git's git clean -fdx command to clean up. However, please be careful when using this command as if you have new files that aren't in the git repository, this will mistakenly remove them. If you encounter cases where we're not properly removing files, please report a bug.

Updating

To update all of the repositories that are part of the platform, you should first make sure that all of your changes have been committed. Once they have been, you can run the following from the root of the smartos-live repository:

$ gmake update

Which will go through and update every repository. If a repository has changed, it will also remove the corresponding stamp file that controls its building. If you have local changes in the repository, then it will rebase your local changes (as though it had run git pull --rebase) on top of everything.

If you haven't updated in a while, you may want to clean your repositories and kick off a full build again before performing incremental building. Occasionally, there will be flag days that will require you to rerun ./configure before proceeding.

Changing Branches

Most of the time, all development happens on the master branch. All SmartOS images are built from the master branch and the general theory is that the master branch should always build, run, and be of a high enough quality that we could cut a release at any time.

While developing, you may want to use local branches, sometimes there are longer lived branches that exist for project development or for releases. To automate the configuration of branches when creating the projects directory, create a file called configure-projects in the root of the smartos-live repository.

The configure-projects file takes the format:

<path relative to ./projects>:<project branch>:[project git repo URL or path]

The special token origin can be used in place of a full git repo URL to denote the standard github.com location for that project. If no URL is given, we default to github.com.

If you update the branch name that corresponds to a repository, rerun ./configure to make sure that every branch is set to the correct one, except that of smartos-live which needs to be changed manually.

Not all repositories have to be on the same branch. It's totally fine to mix and match.

Additional build customization

Several variables can also be set in a shell script at the top of the smartos-live repository called configure-build and are sourced by configure if this file exists. This allows you to override configure script defaults, or include additional pre-build customization.

If this file does not exist, the following defaults are set by configure:

PUBLISHER="joyent"
RELEASE_VER="joyent_147"
ON_CLOSED_BINS_URL="https://us-east.manta.joyent.com/Joyent_Dev/public/releng/illumos/on-closed-bins.i386.tar.bz2"
ON_CLOSED_BINS_ND_URL="https://us-east.manta.joyent.com/Joyent_Dev/public/releng/illumos/on-closed-bins-nd.i386.tar.bz2"
ILLUMOS_ADJUNCT_TARBALL_URL="https://us-east.manta.joyent.com/Joyent_Dev/public/releng/adjuncts/illumos-adjunct.20210922.tgz"

Debug Builds

By default, all of SmartOS is built non-debug. It is possible to build a debug build of SmartOS. This debug build primarily changes things by creating a debug build of illumos. A debug build of illumos will result in various things such as:

  • Additional assertions
  • Additional log messages
  • Kernel memory debugging being enabled by default
  • Several daemons will enable user land memory debugging

Note, the overhead of some things like kernel memory debugging is non-trivial. Debug builds should not be used for performance testing. In addition, there will be substantially more memory used as a result.

However, for development and bring up, a debug build can be invaluable. To enable a debug build in a fresh build environment, you can specify arguments when running ./configure to take care of it. For example, you would modify the normal workflow as follows:

$ git clone https://github.com/TritonDataCenter/smartos-live
$ cd smartos-live
$ ./configure -d
$ gmake live

If you have an existing build environment, you can modify the illumos.sh file that is generated to cause it to perform a debug build. However, if you have already built illumos, it is recommended that you clobber it before doing anything else. For example:

$ gmake clobber
$ vi projects/illumos/illumos.sh
# Add -DF to the NIGHTLY_OPTIONS line
$ gmake live

The -D flag indicates that a debug build should be performed while the -F flag indicates that we should not perform both a debug and non-debug build. This is done because we do not set up the build to support multiple proto-areas, this will end up just causing the system to clobber one build with the other. For more information on the nightly flags, see nightly(1ONBLD)

Controlling Maximum Number of Jobs

By default, the build will determine the maximum number of jobs to use based on the DRAM and CPU available in the zone. However, there are times where you may want to control this manually. To do this, you should set the MAX_JOBS environment variable.

Incremental Development

Each of the different build phases is represented with a stamp file that exists in the root of the smartos-live clone. These files are named based on the directory. For example 0-illumos-stamp and 0-subdir-mdata-client-stamp.

If you remove one of these stamp files, the component will be rebuilt and anything which depends on it will be. For example, if you remove 0-illumos-stamp, it will end up causing illumos-extra to be rebuilt (as it depends on the contents of illumos) and all of the local projects will be rebuilt. Each of these components will be built incrementally. They will not be rebuilt from scratch unless they are cleaned up.

The one project which is different here is illumos-extra. illumos-extra has two stamps: the 0-strap-stamp and the 0-extra-stamp. The 0-strap-stamp represents building the bootstrap phase of illumos-extra. This is the version of illumos-extra which builds the dependencies we need for the build. These are built against the host build system. After illumos is built, we then move onto the primary phase of illumos-extra where we build everything that we need against the proto area. This represents the 0-extra-stamp.

To rebuild most components you can simply remove the stamp file and build that stamp file again. For illumos and illumos-extra this may prove to be rather cumbersome. For incremental building of these components, we recommend that you first build the system completely before performing any incremental work.

Incremental Building of illumos

If you are going to perform incremental building of illumos, you should first familiarize yourself with the illumos Developer's Guide. If you simply remove the 0-illumos-stamp file, this will perform an incremental nightly build.

However, for most iterations, this can be cumbersome. Here, you can use the bldenv(1ONBLD) tool. To use bldenv, follow the following steps from the root of the smartos-live repository:

$ cd projects/illumos/usr/src
$ ./tools/proto/root_i386-nd/opt/onbld/bin/bldenv ../../illumos.sh

From here, you can follow the illumos Developer's Guide with respect to building individual components. If you build everything that you need and it has no impact on other components in the broader SmartOS build, then once you are complete, you can run gmake live again. For example, if you're iterating on a driver or command of some kind in the platform then you can simply use dmake install to get the build artifacts into the proto area and then run gmake live at the top level of smartos-live to rebuild the platform image.

In addition, depending on what you're working on, you can also sometimes copy over build artifacts over to the running system and use them out of /var/tmp/. For example, if you're iterating on a single command. Rather than building the live image time and time again, a more common approach is to use bldenv and make that single command or library again and copy it over to a running system to test against. Even if the vast majority of development is done this way, it's still important to always test a full build at the end.

The top-level tool ./tools/build_illumos in the smartos-live repository will execute an incremental nightly(1ONBLD) build. This will perform the same actions as if you removed the 0-illumos-stamp and ran gmake 0-illumos-stamp at the top-level. However, manually invoking it will not cause dependent items to be rebuilt. This comes with the same risks and rewards of using bldenv.

Iterating on illumos-extra

If you're working on the bootstrap phase, make sure you're not using a cached proto.strap first. Using ./configure -r will tell ./tools/build_strap not to download a pre-built tarball for proto.strap, but instead do a full strap build of illumos-extra. Remember to explicitly rm 0-strap-stamp.

Working on illumos-extra can sometimes be frustrating if you're simply building it from the top-level via the stamp each time. This is because some parts of GCC and other software will often be rebuilt. It is possible to rebuild just a single directory by manually invoking what the Makefile would do. Note, that this manual process requires you to use the path of the repository that you're operating on.

The simplest way to figure out how to rebuild what you need is to examine the make output from a build. For example, if you were iterating on gas and the root of the smartos-live repository was at /home/rm/src/mdb_v8, then you might run a manual command like:

$ cd projects/illumos-extra/binutils
$ STRAP= \
  CTFMERGE=/home/rm/src/mdb_v8/projects/illumos/usr/src/tools/proto/*/opt/onbld/bin/i386/ctfmerge \
  CTFCONVERT=/home/rm/src/mdb_v8/projects/illumos/usr/src/tools/proto/*/opt/onbld/bin/i386/ctfconvert \
  gmake DESTDIR=/home/rm/src/mdb_v8/proto install

Please do not take the above command and run it in your environment. This is meant to be an example. The actual illumos-extra per-directory invocation may have changed. This will also vary whether or not you're operating during the bootstrap phase or not.

By default, running the install target will perform an incremental build. If a partial build has been completed, the source will not be extracted again and patches will not be applied. If you're changing any patches that apply or configure options, you should use the clean target inside of the target directory.

Iterating on vmadm and imgadm

While working on vmadm and imgadm there often isn't a need to rebuild the platform image every single time that you want to make a change. A script called tools/rsync-to exists which will synchronize all of your local change from the smartos-live src/vm and src/img directories and apply them to the target server by copying them into /var/tmp/ and then performing a lofs mount.

Proto Area

When various pieces of software build, they are eventually installed into a proto area. The proto area represents the file system layout of what will become the platform image. For example, the contents of the /usr directory in the proto area will be used in the built platform area. Note, the entire contents of the proto area are not included. The specific set of files is determined by the manifests, which will be discussed in a later section.

The root of the proto area is in the proto directory under the root of the smartos-live git clone.

Binaries in the proto area should be thought of as cross-compiled binaries. While in our case, we are building x86 on x86, the binaries and libraries should not be assumed to work on the existing system. That said, in many cases you can get away with it. However, testing out of the proto area is no substitute for doing full testing.

Packaging and Manifests

There are a lot of items which are installed into the proto area. However, not everything installed into the proto area is actually placed inside the live image. To determine the items that are a part of the live image, each repository that makes up the platform has a manifest file.

The manifest files for each repository are combined into one large manifest file. This manifest file is used by the builder program found in smartos-live in the tools/builder directory.

Each line of a manifest file contains a single file, directory, symlink, or hardlink directive. Comments are done with the # character. For example:

#
# This is a file:
# f path/to/file <perms> <user> <group>
# This is a directory:
# d path/to/dir <perms> <user> <group>
# This is a symlink:
# s <target>=<source>
# This is a hardlink:
# h <target>=<source>
# For example:
#
d usr 0755 root sys
d usr/bin 0755 root sys
f usr/bin/grep 0555 root bin
h usr/bin/egrep=usr/bin/grep
s usr/bin/coolgrep=usr/bin/grep

Something that we deliver should only ever be added to the manifest file from the repository that builds it. For example, because illumos-joyent delivers /usr/sbin/dtrace it should be in the manifest file for illumos-joyent and not any other repository. Keeping them separate this way allows us to minimize build-time flag days that require updating multiple repositories at once.

Device Drivers

For SmartOS, adding a device driver involves updating files that are assembled at run-time under vanilla illumos. You should check and update if necessary the following files under projects/illumos:

usr/src/uts/intel/os/device_policy
usr/src/uts/intel/os/driver_aliases
usr/src/uts/intel/os/driver_classes
usr/src/uts/intel/os/name_to_major
usr/src/uts/intel/os/minor_perm

Contributing

All the repositories contained within this build use GitHub pull requests for new changes.

All changes should have an associated issue. You can use the GitHub issue tracker. MNX employees use an internal JIRA exposed at https://smartos.org/bugview. The commit message should be of this form:

TritonDataCenter/smartos-live#9999 make some changes (#23)

TritonDataCenter/smartos-live#10000 make a related change
Reviewed by: Steve Reviewer <[email protected]>
Approved by: Amy Approver <[email protected]>

The first line should be the bug ID and title, optionally followed by the PR number as added by GitHub. After a blank line, the commit body should list any additional bugs fixed in this change, along with the usual reviewer tags.

In addition to at least one code review, you will need to document your testing and gain "integration approval" (the Approved by tag).

If you would like to make a change to illumos-joyent specifically, please see Upstreaming below.

Review

In general, before putting something up for review, some amount of testing should have already been done. Once you post it for review, then you need to seek out reviewers. A good first step for finding reviewers is to see who has worked on changes in similar areas. A good way to do this is to use git log in portions of the source tree and note who the authors, reviewers, and approvers have been. This can often be a good source of trying to figure out who to ask.

If you're not sure of who to ask or are having trouble finding someone, then consider asking in a public forum such as internal chat or IRC. Even if you're not sure if someone would make sense as a reviewer or not, don't hesitate to reach out and folks will help you find or suggest reviewers. For more information on where to reach out, see Community.

Upstreaming

If you are making a change to illumos-joyent, please consider contributing directly to illumos-gate instead. We automatically merge this into illumos-joyent every working day, so your fix will soon make it into SmartOS itself.

The default case should be contributing directly to upstream. However, in areas of significant divergence, such as lx brand or certain areas of the networking stack, this may not be the best choice.

Integration

When thinking about integrating, the following are questions that you or your approver should be asking:

  • Have I tested this in all the ways I can think of? Might this impact standalone SmartOS or Triton in some way?
  • Have I documented any new commands or interfaces in manual pages?
  • Have I built this both debug and non-debug?
  • Have I reviewed the git pbchk output when working in bldenv in illumos-joyent?
  • Have I run any appropriate make check targets?
  • Have I looked for memory leaks?
  • Have I performed appropriate stress testing to try and find issues that might only arise after prolonged use?
  • Is this a particularly risky change? If so, should I wait until the start of the next release cycle to integrate?
  • Are there any heads-up notices I need to send as part of this? For example, this might happen because of a flag day.
  • Have I added a new tool that's required to run at build-time and tested this on older platform images?

Prior to a PR being merged, it must have at least one code reviewer and one approver. They can be the same person, but two sets of eyes are preferred.

Testing changes

A large part of development in the platform should be focused around testing. Some components such as vmadm and DTrace have extensive test suites. Other components often don't have as extensive test suites. Some components, such as device drivers, often have none.

You should always ask yourself what kinds of unit tests or regression tests can we add that would cover this behavior and add that to the general test suite wherever possible. Otherwise, the useful thing to do is to try and understand and think through all the different ways that your change interacts with the system. What components have been changed and what has been impacted.

For example, if changing a public header in the operating system, the impact can often be beyond just the software in the platform. That might impact all the third-party software that is built via pkgsrc and so it may be appropriate to compare pkgsrc bulk builds before and after the change.

If changing a device driver, you may need to track down multiple generations of said hardware to test against to verify that there aren't regressions.

Along with the various build artifacts created by the SmartOS build that deliver the operating system media, we produce a tarball containing the test suites that were included in the 'illumos-joyent' repository.

A wrapper script is included in the archive which can configure a test system to run these tests, will extract the tests to the correct location on the system, and will optionally execute some of the included test suites.

It has the following usage:

[root@kura ~]# /opt/smartos-test/bin/smartos-test -h
Usage: smartos-test [-h] [-c] [-e] [-r] [-w] <path to tests.tgz>

At least one of -c, -e, -r is required.

  -h       print usage
  -c       configure the system for testing
  -e       execute known tests
  -f       skip the check to ensure platform version == test version
  -r       snapshot or rollback to zones/opt@system-test-smartos-test
           before doing any system configuration or test execution
  -w       when mounting the lofs /usr, make it writable

Developers should extract the script from the test archive, then run it with an argument that points to the test archive, and use one or more of the options -r, -c, -e.

When called with all of the options listed above, smartos-test will do the following:

  • verify we're running on the global zone
  • verify that the user has indicated that no production data exists on this system
  • verify that the test archive version matches the version of the running SmartOS instance
  • take a named-snapshot of /opt if one doesn't already exist, or rollback to that snapshot prior to extracting the tests to /opt
  • create an lofs-mount of /usr in order to extract portions of the test archive that need to reside there
  • temporarily add any local user accounts needed to execute tests
  • download a pkgsrc bootstrap to /opt and install the pkgsrc dependencies needed to run the tests
  • execute the tests serially, accumulating result codes
  • exit 0 if all tests passed, or 1 if one or more tests failed

For example:

[root@kura /var/tmp]# tar zvxf tests-test_archive-master-20191001T134222Z.tgz ./opt/smartos-test
Decompressing 'tests-test_archive-master-20191001T134222Z.tgz' with '/usr/bin/gzcat'...
x ./opt/smartos-test, 0 bytes, 0 tape blocks
x ./opt/smartos-test/README, 958 bytes, 2 tape blocks
x ./opt/smartos-test/bin, 0 bytes, 0 tape blocks
x ./opt/smartos-test/bin/smartos-test, 10062 bytes, 20 tape blocks

[root@kura /var/tmp]# ./opt/smartos-test/bin/smartos-test -rce ./tests-test_archive-master-20191001T134222Z.tgz
Platform version: 20191001T134222Z
   Tests version: 20191001T134222Z
To setup and run these tests you must create the file:
    /lib/sdc/.sdc-test-no-production-data
after ensuring you have no production data on this system.
[root@kura /var/tmp]# touch /lib/sdc/.sdc-test-no-production-data

[root@kura /var/tmp]# ./opt/smartos-test/bin/smartos-test -rce ./tests-test_archive-master-20191001T134222Z.tgz
Platform version: 20191001T134222Z
   Tests version: 20191001T134222Z
Running zfs snapshot zones/opt@system-test-smartos-test
Creating new lofs mount for /usr on /var/tmp/smartos-test-loopback
820704 blocks
Running tar -xzf ./tests-test_archive-master-20191001T134222Z.tgz -C /var/tmp/smartos-test-loopback ./usr
Running mount -O -F lofs -o ro /var/tmp/smartos-test-loopback/usr /usr
Running tar -xzf ./tests-test_archive-master-20191001T134222Z.tgz -C / ./opt ./kernel ./tests.manifest.gen ./tests.buildstamp
adding cyrus user
adding ztest user
Running curl -kO https://pkgsrc.smartos.org/packages/SmartOS/bootstrap/bootstrap-2021Q4-tools.tar.gz
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 22.9M  100 22.9M    0     0   566k      0  0:00:41  0:00:41 --:--:--  577k
Running tar -zxpf bootstrap-2021Q4-tools.tar.gz -C /
Running ln -s /opt/tools /opt/local
Running pkgin -y in python27 sudo coreutils gcc7 gmake
reading local summary...
processing local summary...
processing remote summary (https://pkgsrc.smartos.org/packages/SmartOS/2021Q4/tools/All)...
pkg_summary.xz                                                                                        100%  120KB 119.9KB/s   00:00
calculating dependencies...done.

1 package to refresh:
  bzip2-1.0.8

13 packages to install:
  libiconv-1.14nb3 tcp_wrappers-7.6.4 libffi-3.2.1nb4 gettext-lib-0.19.8.1 db4-4.8.30 openldap-client-2.4.47 cyrus-sasl-2.1.27
  binutils-2.26.1nb1 python27-2.7.15nb1 sudo-1.8.26 coreutils-8.29nb1 gcc7-7.3.0nb4 gmake-4.2.1nb1

1 to refresh, 0 to upgrade, 13 to install
137M to download, 415M to install

libiconv-1.14nb3.tgz                                                                                  100% 2068KB 689.3KB/s   00:03
libffi-3.2.1nb4.tgz                                                                                   100%   59KB  59.4KB/s   00:00
gettext-lib-0.19.8.1.tgz                                                                              100%   67KB  67.3KB/s   00:00

.
. (output omitted for brevity)
.

gcc7-7.3.0nb4: registering info file /opt/tools/gcc7/info/libquadmath.info
installing gmake-4.2.1nb1...
gmake-4.2.1nb1: registering info file /opt/tools/info/make.info
pkg_install warnings: 0, errors: 0
reading local summary...
processing local summary...
marking python27-2.7.15nb1 as non auto-removable
marking sudo-1.8.26 as non auto-removable
marking coreutils-8.29nb1 as non auto-removable
marking gcc7-7.3.0nb4 as non auto-removable
marking gmake-4.2.1nb1 as non auto-removable
Starting test runs

Starting test for bhyvetest with /opt/bhyvetest/bin/bhyvetest -ak
Starting tests...
output directory: /var/tmp/bhyvetest.23953
Executing test /opt/bhyvetest/tst/mevent/lists.delete.exe ... passed
Executing test /opt/bhyvetest/tst/mevent/read.disable.exe ... passed
Executing test /opt/bhyvetest/tst/mevent/read.pause.exe ... passed
Executing test /opt/bhyvetest/tst/mevent/read.requeue.exe ... passed

-------------
Results
-------------

Tests passed: 4
Tests failed: 0
Tests ran:    4

Congrats, some tiny parts of bhyve aren't completely broken, the tests pass.

Starting test-runner for crypto-tests with /opt/crypto-tests/runfiles/default.run
Test: /opt/crypto-tests/tests/aes/kcf/setup (run as root)         [00:00] [PASS]
Test: /opt/crypto-tests/tests/aes/kcf/aes_cbc_32 (run as root)    [00:00] [PASS]
Test: /opt/crypto-tests/tests/aes/kcf/aes_ccm_32 (run as root)    [00:00] [PASS]

.
. (output omitted for brevity)
.

Test: /opt/util-tests/tests/vnic-mtu (run as root)                [00:00] [PASS]
Test: /opt/util-tests/tests/xargs_test (run as root)              [00:00] [PASS]
Test: /opt/util-tests/tests/awk/runtests.sh (run as nobody)       [02:35] [PASS]
Test: /opt/util-tests/tests/ctf/precheck (run as root)            [00:00] [PASS]
Test: /opt/util-tests/tests/ctf/ctftest (run as root)             [00:06] [PASS]
Test: /opt/util-tests/tests/demangle/afl-fast (run as root)       [00:01] [PASS]
Test: /opt/util-tests/tests/demangle/gcc-libstdc++ (run as root)  [00:00] [PASS]
Test: /opt/util-tests/tests/demangle/llvm-stdcxxabi (run as root) [00:00] [PASS]
Test: /opt/util-tests/tests/libnvpair_json/json_00_blank (run as root) [00:00] [PASS]
Test: /opt/util-tests/tests/libnvpair_json/json_01_boolean (run as root) [00:00] [PASS]
Test: /opt/util-tests/tests/libnvpair_json/json_02_numbers (run as root) [00:00] [PASS]
Test: /opt/util-tests/tests/libnvpair_json/json_03_empty_arrays (run as root) [00:00] [PASS]
Test: /opt/util-tests/tests/libnvpair_json/json_04_number_arrays (run as root) [00:00] [PASS]
Test: /opt/util-tests/tests/libnvpair_json/json_05_strings (run as root) [00:00] [PASS]
Test: /opt/util-tests/tests/libnvpair_json/json_06_nested (run as root) [00:00] [PASS]
Test: /opt/util-tests/tests/libnvpair_json/json_07_nested_arrays (run as root) [00:00] [PASS]

Results Summary
PASS      30

Running Time:   00:02:47
Percent passed: 100.0%
Log directory:  /var/tmp/test_results/20191002T101510
[root@kura /var/tmp]#

Note that each test suite emits its own results summary. If any test suites failed, the names of those suites are emitted by smartos-test just before the script exits.

When developers are adding tests to illumos, they should ensure that new tests are added to $SRC/usr/src/pkg/manifests/\*.p5m as these IPS manifests are used to generate the test archive during the SmartOS build.

Public Interfaces

One important thing to always think about is whether or not the thing that's changing is a public interface or not. If this is a standard command or a library function that's been documented or is part of a mapfile section, then it probably is.

When changing a public interface, you need to always pause and work through several cases and make sure that we aren't breaking backwards compatibility. Some questions to ask include ones like:

  1. If I take an old binary and use it against the new library, what happens?
  2. If I had written a shell script that used a command and the output changed, what will happen?
  3. What expectations come from standards or other system about these issues?

These are intended to help guide understand the impact and risk related to the change.

Mapfiles

We have a hard rule: a public mapfile version should not be added directly to illumos-joyent. Instead, if you need to add a new version to a mapfile, it should be done directly via contributing to illumos-gate.

If for some reason that's not feasible, then it should be added to a private version and moved to a public version if/when it is upstreamed to illumos.

If the library in question is specific to illumos-joyent, then it's alright to version it. However, this is not true for the vast majority of libraries.

More Repositories

1

libuv

Go to
C
3,271
star
2

triton

Joyent Triton DataCenter: a cloud management platform with first class support for containers.
Shell
1,202
star
3

node-verror

Rich JavaScript errors
JavaScript
1,125
star
4

containerpilot

A service for autodiscovery and configuration of applications running in containers
Go
1,104
star
5

manta

Manta is a scalable HTTP-based object store
Makefile
565
star
6

node-workflow

Task orchestration, creation and running using NodeJS
JavaScript
445
star
7

node-http-signature

Reference implementation of Joyent's HTTP Signature Scheme
JavaScript
392
star
8

node-stackvis

Stacktrace visualization tools
JavaScript
340
star
9

node-vasync

utilities for observable asynchronous control flow
JavaScript
315
star
10

v8plus

Node.js native add-ons in C
C++
265
star
11

rfd

Requests for Discussion
Roff
251
star
12

mdb_v8

postmortem debugging for Node.js and other V8-based programs
C
235
star
13

manatee

Automated fault monitoring and leader-election system for strongly-consistent, highly-available writes to PostgreSQL (Joyent SDC, Manta).
JavaScript
228
star
14

statemap

Software for rendering statemaps
Rust
219
star
15

restdown

Pretty REST API docs authored in Markdown
Python
203
star
16

sdc-docker

Docker Engine for Triton
JavaScript
182
star
17

triton-kubernetes

Kubernetes on Triton
Go
174
star
18

node-sshpk

Parse, convert, fingerprint and use SSH keys in pure node.js
JavaScript
159
star
19

nodejs-advisory-board

Meeting Minutes and Working Group Discussions
158
star
20

nhttpsnoop

Trace Node.js HTTP server activity
Shell
138
star
21

pgsqlstat

report top-level postgres stats
Shell
129
star
22

node-panic

Postmortem debugging facility for Node.js
JavaScript
120
star
23

node-assert-plus

Extra assertions on top of node's assert module
JavaScript
119
star
24

illumos-kvm

KVM driver for illumos
C
117
star
25

node-snmpjs

SNMP toolkit for Node.js
JavaScript
111
star
26

node-ctype

Read and write binary structures with node
JavaScript
89
star
27

node-manta

Node.js SDK for Manta
JavaScript
75
star
28

node-bunyan-syslog

Syslog Stream for node-bunyan
JavaScript
68
star
29

illumos-kvm-cmd

qemu-kvm for illumos-kvm
C
65
star
30

node-watershed

Simple WebSockets Client/Server (RFC6455)
Makefile
65
star
31

node-smartdc

Client SDK and CLI for the Joyent SmartDataCenter API
JavaScript
63
star
32

mi-centos-7

Shell
63
star
33

node-asn1

Contains parsers and serializers for ASN.1 (currently BER only)
AGS Script
61
star
34

smartos_cookbooks

Chef Cookbooks for managing the SmartOS Global Zone
JavaScript
58
star
35

moray

Moray, the highly-available key/value store (Joyent Triton, Manta)
JavaScript
58
star
36

node-vstream

instrumented streams
JavaScript
56
star
37

node-triton

Triton client tool and node.js library
JavaScript
55
star
38

node-docker-registry-client

node.js client for the docker registry
JavaScript
55
star
39

kang

Introspection for distributed systems
JavaScript
49
star
40

smfgen

Generate SMF manifests from a JSON description
JavaScript
49
star
41

jsstyle

cstyle-based JavaScript style checker
Perl
49
star
42

node-debug-school

nodeschool curriculum for debugging Node.js
JavaScript
49
star
43

node-getopt

POSIX-style getopt() for Node.js
JavaScript
47
star
44

dtruss-osx

Shell
43
star
45

node-ip6addr

IPv6/IPv4 address parsing and manipulation for node.js
JavaScript
43
star
46

pg_prefaulter

Faults pages into PostgreSQL shared_buffers or filesystem caches in advance of WAL apply
Go
43
star
47

node-camp

Asynchronous IO ...camp
JavaScript
43
star
48

manatee-state-machine

design ideas for manatee
JavaScript
42
star
49

node-docker-file-parser

Parses a dockerfile contents string and returns the array of docker commands
JavaScript
42
star
50

smartos-vmtools

Shell
40
star
51

illumos-extra

Extra non-ON software required for Illumos
C
39
star
52

sdc-nfs

user-level NFS server written in node.js
JavaScript
35
star
53

node-extsprintf

Extended POSIX-style sprintf
JavaScript
34
star
54

node-kstat

A node.js addon for reading illumos kstats
Perl
32
star
55

node-jsprim

utilities for primitive JavaScript types
JavaScript
32
star
56

knife-joyent

Opscode Chef knife plug-in for Joyent CloudAPI
Ruby
32
star
57

eng

Joyent Engineering Guide
JavaScript
31
star
58

pkgsrc-joyent

Various pkgsrc packages used by Joyent, not committed upstream yet
Makefile
31
star
59

smartos-overlay

Overlay directory specific to open-source SmartOS
30
star
60

node-fast

streaming JSON RPC over TCP
JavaScript
29
star
61

convertvm

convert OVF vm packages to smartos compatible images
JavaScript
29
star
62

minecrab

Minecraft on Joyent's Cloud & Manta on Demand
Shell
28
star
63

cloud-perf-labs

Student labs for Cloud Performance training
C
28
star
64

node-consulite

Tiny consul Node.js module for client discovery
JavaScript
28
star
65

node-piloted

Service discovery in node using ContainerPilot
JavaScript
27
star
66

node-in-the-industry

This is the script that used to generate fresh "node in the industry" content. It is no longer being maintained. See: https://github.com/nodejs/nodejs.org.
HTML
27
star
67

mi-freebsd-10

Custom FreeBSD 10 ISO builder
Shell
26
star
68

javascriptlint

JavaScript Lint
C
25
star
69

binder

Triton/Manta DNS server over Apache Zookeeper
JavaScript
25
star
70

node-tracing

User definable tracing API
JavaScript
25
star
71

python-manta

Python SDK for Manta (community maintained)
Python
24
star
72

manufacturing

Manufacturing specifications
Python
24
star
73

pglockanalyze

analyze postgres locking behavior
Makefile
23
star
74

sdcboot

SDC FDUM environment
C
23
star
75

pkgsrc-wip

Conversion of the pkgsrc-wip CVS project
Makefile
23
star
76

conch-api

Datacenter build and management service
Perl
22
star
77

node-tab

Unix-style tables for command-line utilities
Makefile
22
star
78

triton-go

Go SDK for Joyent Triton (Compute) and Triton Object Storage (Manta)
Go
21
star
79

node-spawn-async

spawn child processes asynchronously
JavaScript
19
star
80

smartmachine_cookbooks

Chef Cookbooks for managing SmartOS SmartMachines
19
star
81

syslinux

replica of syslinux repo from git://git.kernel.org/pub/scm/boot/syslinux/syslinux.git
C
19
star
82

manta-nfs

NFSv3 Manta Storage Server Gateway
JavaScript
19
star
83

daggr

filter and aggregate numeric data in plaintext or json form
JavaScript
18
star
84

mod_usdt

DTrace provider for Apache
D
18
star
85

freebsd-vpc

Control plane for `projects/VPC` branch of `joyent/freebsd`
Go
18
star
86

mibe

Machine Image Build Environment
PHP
17
star
87

node-zfs

Node.js library to interface with ZFS utilities
JavaScript
17
star
88

ruby-manta

Ruby interface for Joyent's Manta service
Ruby
17
star
89

pgstatsmon

Node.js service for shoveling Postgres stats into Prometheus
JavaScript
17
star
90

tsg-infrastructure

Shell
17
star
91

java-manta

Java Manta Client SDK
Java
16
star
92

manta-thoth

Thoth is a Manta-based system for core and crash dump management
JavaScript
16
star
93

node-nfs

Node.js SDK for writing Portmap/Mount/NFS (v3) servers
JavaScript
16
star
94

triton-terraform

16
star
95

java-http-signature

Library for performing RSA signed HTTP requests in Java
Java
16
star
96

summit-workshop

Node.js Summit - Day Zero Workshop
JavaScript
16
star
97

sdc-adminui

Operator portal for SmartDataCenter
JavaScript
15
star
98

sdc-headnode

Responsible for building and setting up the Triton (formerly SmartDataCenter) headnode.
JavaScript
15
star
99

openbsd-kvm-image-builder

Scripts to create a custom OpenBSD install ISO and a KVM image for use in SmartOS and Triton.
Shell
15
star
100

ipxe

C
14
star