• Stars
    star
    207
  • Rank 189,769 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created over 2 years ago
  • Updated 12 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Hashed Lookup Table based Matrix Multiplication (halutmatmul) - Stella Nera accelerator

Stella Nera: A halutmatmul based Accelerator

Algorithmic CI

PyTorch Layer Test | PyTest Python Linting Mypy - Typechecking

ML CI

ResNet9 - 92%+ accuracy

Hardware CI

HW Synth + PAR OpenROAD RTL Linting HW Design Verification

Paper

Abstract

The recent Maddness method approximates Matrix Multiplication (MatMul) without the need for multiplication by using a hash-based version of product quantization (PQ). The hash function is a decision tree, allowing for efficient hardware implementation, as multiply-accumulate operations are replaced by decision tree passes and LUT lookups. Stella Nera is the first Maddness accelerator achieving 15x higher area efficiency (GMAC/s/mm^2) and 25x higher energy efficiency (TMAC/s/W) than direct MatMul accelerators in the same technology. In a commercial 14 nm technology and scaled to 3 nm, we achieve an energy efficiency of 161 TOp/s/[email protected] with a Top-1 accuracy on CIFAR-10 of over 92.5% using ResNet9.

Algorithmic - Maddness

Maddness Animation

ResNet-9 LUTs, Thresholds, Dims

Halutmatmul example

import numpy as np
from halutmatmul.halutmatmul import HalutMatmul

A = np.random.random((10000, 512))
A_train = A[:8000]
A_test = A[8000:]
B = np.random.random((512, 10))
C = np.matmul(A_test, B)

hm = HalutMatmul(C=32, K=16)
hm.learn_offline(A_train, B)
C_halut = hm.matmul_online(A_test)

mse = np.square(C_halut - C).mean()
print(mse)

Installation

# install conda environment & activate
# mamba is recommended for faster install
conda env create -f environment_gpu.yml
conda activate halutmatmul

# IIS prefixed env
conda env create -f environment_gpu.yml --prefix /scratch/janniss/conda/halutmatmul_gpu

Differentiable Maddness

Differentiable Maddness

Hardware - OpenROAD flow results from CI - NOT OPTIMIZED

All completely open hardware results are NOT OPTIMIZED! The results are only for reference and to show the flow works. In the paper results from commercial tools are shown. See this as a community service to make the hardware results more accessible.

All Designs NanGate45
All Report All
History History

Open Hardware Results Table

NanGate45 halut_matmul halut_encoder_4 halut_decoder
Area [μm^2] 128816 46782 24667.5
Freq [Mhz] 166.7 166.7 166.7
GE 161.423 kGE 58.624 kGE 30.911 kGE
Std Cell [#] 65496 23130 12256
Voltage [V] 1.1 1.1 1.1
Util [%] 50.4 48.7 52.1
TNS 0 0 0
Clock Net Clock Net Clock Net Clock Net
Routing Routing Routing Routing
GDS GDS Download GDS Download GDS Download

Full design (halutmatmul)

Run locally with:

git submodule update --init --recursive
cd hardware
ACC_TYPE=INT DATA_WIDTH=8 NUM_M=8 NUM_DECODER_UNITS=4 NUM_C=16 make halut-open-synth-and-pnr-halut_matmul

References

Citation

@article{schonleber2023stella,
  title={Stella Nera: Achieving 161 TOp/s/W with Multiplier-free DNN Acceleration based on Approximate Matrix Multiplication},
  author={Sch{\"o}nleber, Jannis and Cavigelli, Lukas and Andri, Renzo and Perotti, Matteo and Benini, Luca},
  journal={arXiv preprint arXiv:2311.10207},
  year={2023}
}