• Stars
    star
    243
  • Rank 166,489 (Top 4 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created almost 3 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for Transfer Learning book--《迁移学习导论》配套代码

Code for 'Introduction to transfer learning' book 《迁移学习导论》(第二版)代码

This folder contains the codes for the book Introduction to Transfer Learning: Algorithms and Practice. 迁移学习导论.

Links for the Chinese book (2nd edition) can be found at: links.md. 中文第二版书中的链接请见这里

Dataset

  1. For algorithm chapters (chapters 1 ~ 11), we mainly use Office-31 dataset, download HERE:
  • For non-deep learning methods (chapters 1~7), we use ResNet-50 pre-trained features. Thus, download the ResNet-50 features.
  • For deep learning methods (chapters 8~11), we use Office-31 original dataset. Thus, download the raw images.
  1. For application chapters (chapters 15~19), the datasets download link can be found at respective chapters.

Requirements

The following is a basic environment to run most experiments. No special tricky packages are needed. Just pip install -r requirements.txt.

  • Python 3.x
  • scikit-learn
  • numpy
  • scipy
  • torch
  • torchvision

Citation

If you find the code or the book helpful, please consider citing our book as:

@book{tlbook,
 author = {Wang, Jindong and Chen, Yiqiang},
 title = {Introduction to Transfer Learning: Algorithms and Practice},
 year = {2023},
 url = {jd92.wang/tlbook},
 publisher = {Springer Nature}
}

@book{tlbookchinese,
 author = {王晋东 and 陈益强},
 title = {迁移学习导论},
 year = {2021},
 url = {jd92.wang/tlbook}
}

Recommended Repo

My unified transfer learning repo (and the most popular transfer learning repo on Github) has everything you need for transfer learning: https://github.com/jindongwang/transferlearning. Including: Papers, codes, datasets, benchmarks, applications etc.

More Repositories

1

transferlearning

Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习
Python
13,147
star
2

transferlearning-tutorial

《迁移学习简明手册》LaTex源码
TeX
2,486
star
3

MachineLearning

一些关于机器学习的学习资料与研究介绍
1,927
star
4

activityrecognition

Resources about activity recognition-行为识别资料
MATLAB
878
star
5

Deep-learning-activity-recognition

A tutorial for using deep learning for activity recognition (Pytorch and Tensorflow)
Python
215
star
6

Pytorch-CapsuleNet

An easy-to-follow Pytorch implementation of Hinton's Capsule Network
Python
162
star
7

ProbabilityHomework

中国科学院大学(计算所)《概率方法与随机图》课程作业与教材
TeX
55
star
8

EasyEspnet

Making Espnet easier to use
Python
51
star
9

aqistudy

全国122个城市历史空气质量爬取
Python
40
star
10

maml

Python implementation MAML (model-agnostic meta learning)
Python
26
star
11

informationretrieval

信息检索检索器的Java实现
Roff
17
star
12

BUAA-Recommend-Graduate-Test

北航2013年计算机夏令营机试题,2 problems written in C language,2013
C++
9
star
13

graph

Java实现图,邻接矩阵和邻接表两种方式
Java
8
star
14

ActivationMapVisualization

Visualize the activation map using Grad CAM
Jupyter Notebook
7
star
15

kaggle-bikesharing

Python
6
star
16

DataBaseOperation

Java和C#简单的数据库操作类,支持Sql Server和Sqlite及mysql
C#
4
star
17

learning_to_match

Jupyter Notebook
3
star
18

jindongwang

2
star
19

SyntaxAnalysis

syntax analytics
C#
2
star