• Stars
    star
    264
  • Rank 155,103 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created over 8 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

spaCy REST API, wrapped in a Docker container.

spaCy API Docker

Ready-to-use Docker images for the spaCy NLP library.


spaCy API Docker is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial

GitAds

Features

  • Use the awesome spaCy NLP framework with other programming languages.
  • Better scaling: One NLP - multiple services.
  • Build using the official spaCy REST services.
  • Dependency parsing visualisation with displaCy.
  • Docker images for English, German, Spanish, Italian, Dutch and French.
  • Automated builds to stay up to date with spaCy.
  • Current spaCy version: 2.0.16

Please note that this is a completely new API and is incompatible with the previous one. If you still need them, use jgontrum/spacyapi:en-legacy or jgontrum/spacyapi:de-legacy.

Documentation, API- and frontend code based upon spaCy REST services by Explosion AI.


Images

Image Description
jgontrum/spacyapi:base_v2 Base image for spaCy 2.0, containing no language model
jgontrum/spacyapi:en_v2 English language model, spaCy 2.0
jgontrum/spacyapi:de_v2 German language model, spaCy 2.0
jgontrum/spacyapi:es_v2 Spanish language model, spaCy 2.0
jgontrum/spacyapi:fr_v2 French language model, spaCy 2.0
jgontrum/spacyapi:pt_v2 Portuguese language model, spaCy 2.0
jgontrum/spacyapi:it_v2 Italian language model, spaCy 2.0
jgontrum/spacyapi:nl_v2 Dutch language model, spaCy 2.0
jgontrum/spacyapi:all_v2 Contains EN, DE, ES, PT, NL, IT and FR language models, spaCy 2.0
OLD RELEASES
jgontrum/spacyapi:base Base image, containing no language model
jgontrum/spacyapi:latest English language model
jgontrum/spacyapi:en English language model
jgontrum/spacyapi:de German language model
jgontrum/spacyapi:es Spanish language model
jgontrum/spacyapi:fr French language model
jgontrum/spacyapi:all Contains EN, DE, ES and FR language models
jgontrum/spacyapi:en-legacy Old API with English model
jgontrum/spacyapi:de-legacy Old API with German model

Usage

docker run -p "127.0.0.1:8080:80" jgontrum/spacyapi:en_v2

All models are loaded at start up time. Depending on the model size and server performance, this can take a few minutes.

The displaCy frontend is available at /ui.

Docker Compose

version: '2'

services:
  spacyapi:
    image: jgontrum/spacyapi:en_v2
    ports:
      - "127.0.0.1:8080:80"
    restart: always

Running Tests

In order to run unit tests locally pytest is included.

docker run -it jgontrum/spacyapi:en_v2 app/env/bin/pytest app/displacy_service_tests

Special Cases

The API includes rudimentary support for specifying special cases for your deployment. Currently only basic special cases are supported; for example, in the spaCy parlance:

tokenizer.add_special_case("isn't", [{ORTH: "isn't"}])

They can be supplied in an environment variable corresponding to the desired language model. For example, en_special_cases or en_core_web_lg_special_cases. They are configured as a single comma-delimited string, such as "isn't,doesn't,won't".

Use the following syntax to specify basic special case rules, such as for preserving contractions:

docker run -p "127.0.0.1:8080:80" -e en_special_cases="isn't,doesn't" jgontrum/spacyapi:en_v2

You can also configure this in a .env file if using docker-compose as above.


REST API Documentation

GET /ui/

displaCy frontend is available here.


POST /dep

Example request:

{
  "text": "They ate the pizza with anchovies",
  "model": "en",
  "collapse_punctuation": 0,
  "collapse_phrases": 1
}
Name Type Description
text string text to be parsed
model string identifier string for a model installed on the server
collapse_punctuation boolean Merge punctuation onto the preceding token?
collapse_phrases boolean Merge noun chunks and named entities into single tokens?

Example request using the Python Requests library:

import json
import requests

url = "http://localhost:8000/dep"
message_text = "They ate the pizza with anchovies"
headers = {'content-type': 'application/json'}
d = {'text': message_text, 'model': 'en'}

response = requests.post(url, data=json.dumps(d), headers=headers)
r = response.json()

Example response:

{
  "arcs": [
    { "dir": "left", "start": 0, "end": 1, "label": "nsubj" },
    { "dir": "right", "start": 1, "end": 2, "label": "dobj" },
    { "dir": "right", "start": 1, "end": 3, "label": "prep" },
    { "dir": "right", "start": 3, "end": 4, "label": "pobj" },
    { "dir": "left", "start": 2, "end": 3, "label": "prep" }
  ],
  "words": [
    { "tag": "PRP", "text": "They" },
    { "tag": "VBD", "text": "ate" },
    { "tag": "NN", "text": "the pizza" },
    { "tag": "IN", "text": "with" },
    { "tag": "NNS", "text": "anchovies" }
  ]
}
Name Type Description
arcs array data to generate the arrows
dir string direction of arrow ("left" or "right")
start integer offset of word the arrow starts on
end integer offset of word the arrow ends on
label string dependency label
words array data to generate the words
tag string part-of-speech tag
text string token

Curl command:

curl -s localhost:8000/dep -d '{"text":"Pastafarians are smarter than people with Coca Cola bottles.", "model":"en"}'
{
  "arcs": [
    {
      "dir": "left",
      "end": 1,
      "label": "nsubj",
      "start": 0
    },
    {
      "dir": "right",
      "end": 2,
      "label": "acomp",
      "start": 1
    },
    {
      "dir": "right",
      "end": 3,
      "label": "prep",
      "start": 2
    },
    {
      "dir": "right",
      "end": 4,
      "label": "pobj",
      "start": 3
    },
    {
      "dir": "right",
      "end": 5,
      "label": "prep",
      "start": 4
    },
    {
      "dir": "right",
      "end": 6,
      "label": "pobj",
      "start": 5
    }
  ],
  "words": [
    {
      "tag": "NNPS",
      "text": "Pastafarians"
    },
    {
      "tag": "VBP",
      "text": "are"
    },
    {
      "tag": "JJR",
      "text": "smarter"
    },
    {
      "tag": "IN",
      "text": "than"
    },
    {
      "tag": "NNS",
      "text": "people"
    },
    {
      "tag": "IN",
      "text": "with"
    },
    {
      "tag": "NNS",
      "text": "Coca Cola bottles."
    }
  ]
}

POST /ent

Example request:

{
  "text": "When Sebastian Thrun started working on self-driving cars at Google in 2007, few people outside of the company took him seriously.",
  "model": "en"
}
Name Type Description
text string text to be parsed
model string identifier string for a model installed on the server

Example request using the Python Requests library:

import json
import requests

url = "http://localhost:8000/ent"
message_text = "When Sebastian Thrun started working on self-driving cars at Google in 2007, few people outside of the company took him seriously."
headers = {'content-type': 'application/json'}
d = {'text': message_text, 'model': 'en'}

response = requests.post(url, data=json.dumps(d), headers=headers)
r = response.json()

Example response:

[
  { "end": 20, "start": 5, "type": "PERSON" },
  { "end": 67, "start": 61, "type": "ORG" },
  { "end": 75, "start": 71, "type": "DATE" }
]
Name Type Description
end integer character offset the entity ends after
start integer character offset the entity starts on
type string entity type
curl -s localhost:8000/ent -d '{"text":"Pastafarians are smarter than people with Coca Cola bottles.", "model":"en"}'
[
  {
    "end": 12,
    "start": 0,
    "text": "Pastafarians",
    "type": "NORP"
  },
  {
    "end": 51,
    "start": 42,
    "text": "Coca Cola",
    "type": "ORG"
  }
]

POST /sents

Example request:

{
  "text": "In 2012 I was a mediocre developer. But today I am at least a bit better.",
  "model": "en"
}
Name Type Description
text string text to be parsed
model string identifier string for a model installed on the server

Example request using the Python Requests library:

import json
import requests

url = "http://localhost:8000/sents"
message_text = "In 2012 I was a mediocre developer. But today I am at least a bit better."
headers = {'content-type': 'application/json'}
d = {'text': message_text, 'model': 'en'}

response = requests.post(url, data=json.dumps(d), headers=headers)
r = response.json()

Example response:

["In 2012 I was a mediocre developer.", "But today I am at least a bit better."]

POST /sents_dep

Combination of /sents and /dep, returns sentences and dependency parses

Example request:

{
  "text": "In 2012 I was a mediocre developer. But today I am at least a bit better.",
  "model": "en"
}
Name Type Description
text string text to be parsed
model string identifier string for a model installed on the server

Example request using the Python Requests library:

import json
import requests

url = "http://localhost:8000/sents_dep"
message_text = "In 2012 I was a mediocre developer. But today I am at least a bit better."
headers = {'content-type': 'application/json'}
d = {'text': message_text, 'model': 'en'}

response = requests.post(url, data=json.dumps(d), headers=headers)
r = response.json()

Example response:

[
  {
    "sentence": "In 2012 I was a mediocre developer.",
    "dep_parse": {
      "arcs": [
        {
          "dir": "left",
          "end": 3,
          "label": "prep",
          "start": 0,
          "text": "In"
        },
        {
          "dir": "right",
          "end": 1,
          "label": "pobj",
          "start": 0,
          "text": "2012"
        },
        {
          "dir": "left",
          "end": 3,
          "label": "nsubj",
          "start": 2,
          "text": "I"
        },
        {
          "dir": "left",
          "end": 6,
          "label": "det",
          "start": 4,
          "text": "a"
        },
        {
          "dir": "left",
          "end": 6,
          "label": "amod",
          "start": 5,
          "text": "mediocre"
        },
        {
          "dir": "right",
          "end": 6,
          "label": "attr",
          "start": 3,
          "text": "developer"
        },
        {
          "dir": "right",
          "end": 7,
          "label": "punct",
          "start": 3,
          "text": "."
        }
      ],
      "words": [
        {
          "tag": "IN",
          "text": "In"
        },
        {
          "tag": "CD",
          "text": "2012"
        },
        {
          "tag": "PRP",
          "text": "I"
        },
        {
          "tag": "VBD",
          "text": "was"
        },
        {
          "tag": "DT",
          "text": "a"
        },
        {
          "tag": "JJ",
          "text": "mediocre"
        },
        {
          "tag": "NN",
          "text": "developer"
        },
        {
          "tag": ".",
          "text": "."
        }
      ]
    }
  },
  {
    "sentence": "But today I am at least a bit better.",
    "dep_parse": {
      "arcs": [
        {
          "dir": "left",
          "end": 11,
          "label": "cc",
          "start": 8,
          "text": "But"
        },
        {
          "dir": "left",
          "end": 11,
          "label": "npadvmod",
          "start": 9,
          "text": "today"
        },
        {
          "dir": "left",
          "end": 11,
          "label": "nsubj",
          "start": 10,
          "text": "I"
        },
        {
          "dir": "left",
          "end": 13,
          "label": "advmod",
          "start": 12,
          "text": "at"
        },
        {
          "dir": "left",
          "end": 15,
          "label": "advmod",
          "start": 13,
          "text": "least"
        },
        {
          "dir": "left",
          "end": 15,
          "label": "det",
          "start": 14,
          "text": "a"
        },
        {
          "dir": "left",
          "end": 16,
          "label": "npadvmod",
          "start": 15,
          "text": "bit"
        },
        {
          "dir": "right",
          "end": 16,
          "label": "acomp",
          "start": 11,
          "text": "better"
        },
        {
          "dir": "right",
          "end": 17,
          "label": "punct",
          "start": 11,
          "text": "."
        }
      ],
      "words": [
        {
          "tag": "CC",
          "text": "But"
        },
        {
          "tag": "NN",
          "text": "today"
        },
        {
          "tag": "PRP",
          "text": "I"
        },
        {
          "tag": "VBP",
          "text": "am"
        },
        {
          "tag": "IN",
          "text": "at"
        },
        {
          "tag": "JJS",
          "text": "least"
        },
        {
          "tag": "DT",
          "text": "a"
        },
        {
          "tag": "NN",
          "text": "bit"
        },
        {
          "tag": "RBR",
          "text": "better"
        },
        {
          "tag": ".",
          "text": "."
        }
      ]
    }
  }
]

GET /models

List the names of models installed on the server.

Example request:

GET /models

Example response:

["en", "de"]

GET /{model}/schema

Example request:

GET /en/schema
Name Type Description
model string identifier string for a model installed on the server

Example response:

{
  "dep_types": ["ROOT", "nsubj"],
  "ent_types": ["PERSON", "LOC", "ORG"],
  "pos_types": ["NN", "VBZ", "SP"]
}

GET /version

Show the used spaCy version.

Example request:

GET /version

Example response:

{
  "spacy": "2.2.4"
}

More Repositories

1

fastapi_jwt_auth_with_aws_cognito

Example code for my Medium article.
Python
83
star
2

aiohttp-scraper

A robust asynchronous web scraping client using aiohttp.
Python
19
star
3

PCFG-EM

Implementation of the em-algorithm for PCFGs (inside-outside-algorithm)
C++
16
star
4

connexion-cookiecutter

Template for building micro service APIs with Connexion, deployed via Docker and running with uWSGI & NGINX.
Python
8
star
5

parseridge

Parseridge: A Transition-based Dependency Parser
Python
6
star
6

Flatfinder

Checks real estate websites periodically for new offers and notifies you via email or Prowl push message
Python
4
star
7

SemanticMachineTranslationEvaluation

A proof-of-concept that using FrameNet based semantic to evaluate MT systems can outperform the BLEU score.
Python
3
star
8

GeoTweetEstimator

Estimating GPS coordinates of tweets based on the text. Presented at NLP4CMC 2015.
Python
3
star
9

slackbot-uni-potsdam-cafeteria

Code for a bot for Slack that parses the cafeteria menu from the University of Potsdam website and posts it on a channel.
Python
3
star
10

PennToPCFG

Learns an unlexicalized PCFG from a Penn Treebank
Python
3
star
11

docker-elck

ELK Stack + Cerebro (former 'kopf'-plugin)
2
star
12

jupyter-Word2Vec-Docker

Jupyter Notebook for Word2Vec + NLP running on Docker. Auth via nginx htpasswd.
Python
2
star
13

cky-parser-optimization

Assignments and materials for the syntactic parsing class at Uppsala University.
Python
2
star
14

elmo_from_conll

Scripts to collect ELMo layer outputs for sentences from a CoNLL treebank.
Shell
2
star
15

CorpusHashtagStatistics

Generates statistics for the hashtag usage in text corpus.
Python
1
star
16

MensaUP-API

An API for the Mensa of the University of Potsdam
Python
1
star
17

jgsnippets

Collection of classes and functions I often use.
Python
1
star
18

cv

Code of my CV website + Docker deployment
HTML
1
star
19

WikipediaImageCrawler

Recursively extracts images that are assigned to a category in Wikipedia.
Python
1
star
20

lyrics-scrapy

Crawls lyrics from MetroLyrics.com into Elasticsearch
Python
1
star
21

moodcontrol

Code of our hackathon-winning proof-of-concept. (codeFEST8)
Python
1
star
22

docker-tensorflow-tutorial

Small introduction to Docker with the example of a Tensorflow use case.
Makefile
1
star