• Stars
    star
    2
  • Language
  • Created about 11 years ago
  • Updated about 11 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An implementation of a deep belief network-based network generative network model

More Repositories

1

scnn

Implementation of search-convolutional neural networks (SCNNs)
OpenEdge ABL
51
star
2

dcnn

An implementation of Diffusion-Convolutional Neural Networks in Lasagne and Theano.
Python
33
star
3

snap-facebook

A python script that parses the SNAP facebook dataset into a single NetworkX network
Python
26
star
4

ergm

An implementation of the exponential random graph model
Python
25
star
5

strie.el

simple tries for emacs
Emacs Lisp
13
star
6

purty-mode

Safely pretty-print greek letters, mathematical symbols, or anything else
Emacs Lisp
11
star
7

quicknet

A fast network simulator
C
3
star
8

iota

A lisp interpreter
C
3
star
9

generator-learner

A reinforcement learning approach to discovering network generation algorithms
Python
2
star
10

include.el

Dependency management for elisp snippets
Emacs Lisp
1
star
11

deepnet

A simple implementation of deep belief networks
Python
1
star
12

depnet

A dependency network implementation on top of scikit-learn
Python
1
star
13

hackscience.github.io

blog
JavaScript
1
star
14

jointrw

Python
1
star
15

cljwebserve

A simple concurrent webserver written in clojure
Clojure
1
star
16

egosnap

Processing for the Stanford Network Analysis Project (SNAP) twitter ego nets
Python
1
star
17

ntwx-js

An interactive graph-layout hack for canvas elements.
JavaScript
1
star
18

landing

Landing page for jatwood.org
CSS
1
star
19

facebook-api-hack

just messing around with the facebook api
JavaScript
1
star
20

blog

1
star
21

subtime

Add or subtract an offset from a .srt-formatted subtitle file
Python
1
star
22

krapivsky

A fast implementation of the multivariate scale-free network generation model described in "Krapivsky, P., Rodgers, G., & Redner, S. (2001). Degree Distributions of Growing Networks. Physical Review Letters, 86(23), 5401–5404."
C
1
star