Deep Learning Course Codes
Notes, Codes, and Tutorials for the Deep Learning Course at ChinaHadoop
注意每一份代码分别有Jupyter Notebook, Python, 以及HTML三种形式,大家可以按照自己的需求阅读,学习或运行。 运行时需要注意anaconda的版本问题,anaconda2-5.0.0与anaconda3-5.0.0分别对应python2.7与python3.6环境。
重要参考资料:
学习资料:
- Effective TensorFlow - TensorFlow tutorials and best practices.
- Finch - Many Machine Intelligence models implemented (mainly tensorflow, sometimes pytorch / mxnet)
- Pytorch Tutorials - PyTorch Tutorial for Deep Learning Researchers.
- MXNet the straight dope - An interactive book on deep learning. Much easy, so MXNet. Wow.
第一讲:深度学习课程总览与神经网络入门
代码示例:TensorFlow基础与线性回归模型(TensorFlow, PyTorch)
- MNIST数据集演示
- TensorFlow基础
- 线性回归模型-TensorFlow
- 线性回归模型-PyTorch
- 线性回归模型-MXNet (contributed by LinkHS)
第二讲:传统神经网络
代码示例:K近邻算法,线性分类,以及多层神经网络(TensorFlow, PyTorch)
- K近邻算法在图像分类上的应用-TensorFlow
- K近邻算法在图像分类上的应用-PyTorch (contributed by Johnny Chen)
- 多层神经网络示例-TensorFlow
- 多层神经网络示例-PyTorch
第三讲:卷积神经网络基础
代码示例:卷积神经网络的基础实现(TensorFlow)
第四讲:卷积神经网络进阶
代码示例:卷积神经网络的进阶实现(TensorFlow)
第五讲:深度神经网络:目标分类与识别
代码示例:深度神经网络-图像识别与分类(TensorFlow, PyTorch)
- 安装TensorLayer (中文文档参见此处,此后复杂实现均推荐使用TensorLayer高级API库,同时可以结合TF-Slim与Keras)
pip install git+https://github.com/zsdonghao/tensorlayer.git
- 安装OpenCV python接口
conda install -c menpo opencv3
或
pip install opencv-python
- 所需数据集下载:
data.zip
: [微云][百度云] (覆盖./05_Image_recognition_and_classification/data
文件夹) - 所需模型下载:
vgg19.npz
[微云][百度云] (放置于./05_Image_recognition_and_classification
文件夹下) - 所需模型下载:
inception_v3.ckpt
[微云][百度云] (放置于./05_Image_recognition_and_classification
文件夹下)
- Class Activation Mapping (CAM)示例 (完整实现可参考此处)
第六讲:深度神经网络:目标检测与定位
代码示例:目标检测模型示例 (TensorFlow, PyTorch)
-
所需模型下载:
ssd_mobilenet_v1_coco_11_06_2017
: [微云] (解压并置于06_Object_detection/Object_Detection_Tensorflow_API_demo/object_detection/
文件夹下) -
[
SSD: Single Shot Multibox Detector
] (TensorFlow实现, PyTorch实现) -
[
YOLO
,YOLOv2
] (TensorFlow实现, PyTorch实现)
第七讲:深度神经网络:目标追踪与目标分割
代码示例:目标追踪与目标分割
-
目标追踪 - [
GOTURN
](TensorFlow实现, Plain Python实现, Original C++实现) -
目标分割 - [
FCN
](TensorFlow实现, PyTorch实现) -
目标分割 - [
Mask-RCNN
](TensorFlow实现, PyTorch实现)
第八讲:循环神经网络与序列模型
代码示例:循环神经网络
-
循环神经网络,
RNN
- [TensorFlow, Pytorch] -
双向循环神经网络,
Bidirectional-RNN
- [TensorFlow, Pytorch] -
动态循环神经网络,
Dynamic-RNN
- [TensorFlow] -
自动编码器,
AutoEncoder
- [TensorFlow] -
变分自动编码器,
Variational AutoEncoder
- [TensorFlow] -
图片标注,
Image Captioning
- [TensorFlow, PyTorch] -
视频标注,
Video Captioning
- [TensorFlow]
第九讲:无监督式学习与生成对抗网络
代码示例:生成对抗网络
-
生成对抗网络,
GAN
- [TensorFlow, PyTorch] -
深度卷积生成对抗网络,
DCGAN
- [TensorFlow] -
Pix2Pix
,CycleGAN
- [PyTorch] -
StackGAN
- [TensorFlow, PyTorch]
第十讲:强化学习
-
Basic Reinforcement Learning
- [basic_reinforcement_learning] -
Applied Reinfocement Learning
- [applied-reinforcement-learning] -
Oreilly RL Tutorial
- [oreilly-rl-tutorial]