• Stars
    star
    124
  • Rank 288,207 (Top 6 %)
  • Language
    Python
  • Created over 6 years ago
  • Updated over 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Graph Neural Networks for Quantum Chemistry

Graph Neural Networks for Quantum Chemistry

Implementation and modification of Message Passing Neural Networks as explained in the article proposed by Gilmer et al. [1].

Requirements:

  • python 3.5
  • pytorch=0.1.12
  • networkx=1.11
  • tensorboard
  • tensorboard_logger
  • numpy
  • joblib

Setup

Using conda create command to create a conda environment.

$ module add anaconda3/4.2.0
$ conda create -n python-3.5 python=3.5
$ source activate python-3.5

Installation

$ pip install numpy tensorboard tensorboard_logger joblib
$ conda install -c rdkit rdkit 
$ conda install networkx=1.11
$ conda install pytorch=0.1.12 cuda75 -c soumith
$ git clone https://github.com/ifding/graph-neural-networks.git
$ cd graph-neural-networks

Examples

QM9

Download and convert QM9 data set:

$ python3 download_data.py qm9 -p /scratch3/feid/mpnn-data/

Train and test MPNN (default) and MPNNv2 model with GPU (default) or not:

$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/

$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --no-cuda

$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --model MPNNv2
    
$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --no-cuda --model MPNNv2

$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --model MPNNv3
    
$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --no-cuda --model MPNNv3

Bibliography

More Repositories

1

radare2-tutorial

Reverse Engineering using Radare2
C
306
star
2

iot-malware

Malware source code samples leaked online uploaded to GitHub for those who want to analyze the code
C
281
star
3

learning-notes

Always Keep Learning
C++
47
star
4

useful-scripts

beautiful and useful scripts
Jupyter Notebook
46
star
5

ml-system-design

Machine Learning System Design
41
star
6

adversarial-examples

Adversarial Examples: Attacks and Defenses for Deep Learning
Jupyter Notebook
31
star
7

seq2seq-pytorch

Sequence to Sequence Models with PyTorch
Jupyter Notebook
27
star
8

deep-learning-python

Deep Learning using Python/C++/OpenCV
Python
18
star
9

iot

IoT device: Hardware & Firmware
C
18
star
10

wavenet-speech-to-text

A PyTorch implementation of speech recognition based on DeepMind's WaveNet
Python
18
star
11

DLKD

Source Code for "Dual-Level Knowledge Distillation via Knowledge Alignment and Correlation", TNNLS, https://ieeexplore.ieee.org/abstract/document/9830618
Python
11
star
12

flex-bison

flex & bison (Lexical Analysis and Parsing)
C++
9
star
13

iot-streaming

IoT Streaming using Flink to connect Kafka and Cassandra, Elastic
Java
8
star
14

uhgr

[MLG 2020] Unsupervised Hierarchical Graph Representation Learning by Mutual Information Maximization (https://arxiv.org/abs/2003.08420)
Python
5
star
15

protein-transformer

Transformer implementation of Protein Secondary Structure Prediction
Python
3
star
16

Infomax-pytorch

This is a simple pytorch implementation of Deep-INFOMAX
Python
3
star
17

async-chat

An asynchronous chat client and server with detailed comments
Rust
2
star
18

pdf_to_txt

Detect tables from images and run OCR on the cells.
Python
2
star
19

hadoopOnGeni

Geni users to create Hadoop and Spark profile on CloudLab
Shell
1
star
20

openwrt-packages

Packages for OpenWRT
C
1
star
21

generative-models

Tensorflow 2.0 implementation of generative models, e.g. VAE, GAN
Python
1
star
22

mini-kv

A mini kv database demo that using simplified Bitcask
Rust
1
star
23

DLS-Clustering

Clustering by Directly Disentangling Latent Space (https://arxiv.org/abs/1911.05210)
Python
1
star
24

ifding.github.io

A mini kv database demo that using simplified Bitcask
Rust
1
star