EVA3D: Compositional 3D Human Generation from 2D Image Collections
EVA3D is a high-quality unconditional 3D human generative model that only requires 2D image collections for training.
Sample 1 RGB | Sample 1 Geo | Sample 2 RGB | Sample 2 Geo | Novel Pose Generation | Latent Space Interpolation |
[Project Page] โข
[arXiv] โข
[Demo Video] โข
[Colab Demo] โข
[Hugging Face ๐ค ]
๐ฃ Updates
[02/2023] Inference codes for SHHQ, UBCFashion and AIST are released.
[02/2023] Training codes for DeepFashion with our processed dataset are released.
[02/2023] Inference codes (512x256 generation on DeepFashion) are released, including colab and huggingface demos.
[01/2023] EVA3D is accepted to ICLR 2023 (Spotlight)
๐ค Citation
If you find our work useful for your research, please consider citing the paper:
@inproceedings{
hong2023evad,
title={{EVA}3D: Compositional 3D Human Generation from 2D Image Collections},
author={Fangzhou Hong and Zhaoxi Chen and Yushi LAN and Liang Pan and Ziwei Liu},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=g7U9jD_2CUr}
}
๐ฅ๏ธ Requirements
NVIDIA GPUs are required for this project. We have test the inference codes on NVIDIA RTX2080Ti, NVIDIA V100, NVIDIA A100, NVIDIA T4. The training codes have been tested on NVIDIA V100, NVIDIA A100. We recommend using anaconda to manage the python environments.
conda create --name eva3d python=3.8
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install pytorch3d -c pytorch3d
pip install -r requirements.txt
๐โโ๏ธ Inference
Download Models
The pretrain model and SMPL model are needed for inference.
The following script downloads pretrain models.
python download_models.py
Register and download SMPL models here. Put the downloaded models in the folder smpl_models. Only the neutral one is needed. The folder structure should look like
./
โโโ ...
โโโ smpl_models/
โโโ smpl/
โโโ SMPL_NEUTRAL.pkl
Commands
We provide a script for inference the model trained on DeepFashion, SHHQ, UBCFashion, AIST.
bash scripts/demo_deepfashion_512x256.sh
bash scripts/demo_shhq_512x256.sh
bash scripts/demo_ubcfashion_512x256.sh
bash scripts/demo_aist_256x256.sh
๐ Training
DeepFashion
Download SMPL Models & Processed Datasets
python download_models.py
python download_datasets.py
Commands
bash scripts/train_deepfashion_512x256.sh
Intermediate results will be saved under checkpoint/train_deepfashion_512x256/volume_renderer/samples
every 100 iterations. The first line presents inference images from EMA generator. The second line present one inference sample of the training generator and one sample from the training dataset.
To inference the trained models, please refer to the Inference section.
Support for more datasets coming soon...
๐๏ธ License
Distributed under the S-Lab License. See LICENSE
for more information.
๐ Acknowledgements
This study is supported by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), and under the RIE2020 Industry Alignment Fund โ Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).
This project is built on source codes shared by StyleSDF.