libmolgrid
libmolgrid is under active development, but should be suitable for use by early adopters.
If you use libmolgrid in your research, please cite:
libmolgrid: Graphics Processing Unit Accelerated Molecular Gridding for Deep Learning Applications. J Sunseri, DR Koes. Journal of Chemical Information and Modeling, 2020 arxiv
@article{sunseri2020libmolgrid,
title={libmolgrid: Graphics Processing Unit Accelerated Molecular Gridding for Deep Learning Applications},
author={Sunseri, Jocelyn and Koes, David R},
journal={Journal of Chemical Information and Modeling},
volume={60},
number={3},
pages={1079--1084},
year={2020},
publisher={ACS Publications}
}
Documentation
https://gnina.github.io/libmolgrid/
Installation
PIP
pip install molgrid
conda
conda install -c gnina molgrid
Build from Source
pip3 install numpy pytest pyquaternion
apt install libeigen3-dev libboost-all-dev
cd libmolgrid
mkdir build
cd build
cmake ..
make -j8
sudo make install
Example
import molgrid
import pytest
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import init
import os
def test_train_torch_cnn():
batch_size = 50
datadir = os.path.dirname(__file__)+'/data'
fname = datadir+"/small.types"
molgrid.set_random_seed(0)
torch.manual_seed(0)
np.random.seed(0)
class Net(nn.Module):
def __init__(self, dims):
super(Net, self).__init__()
self.pool0 = nn.MaxPool3d(2)
self.conv1 = nn.Conv3d(dims[0], 32, kernel_size=3, padding=1)
self.pool1 = nn.MaxPool3d(2)
self.conv2 = nn.Conv3d(32, 64, kernel_size=3, padding=1)
self.pool2 = nn.MaxPool3d(2)
self.conv3 = nn.Conv3d(64, 128, kernel_size=3, padding=1)
self.last_layer_size = dims[1]//8 * dims[2]//8 * dims[3]//8 * 128
self.fc1 = nn.Linear(self.last_layer_size, 2)
def forward(self, x):
x = self.pool0(x)
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = F.relu(self.conv3(x))
x = x.view(-1, self.last_layer_size)
x = self.fc1(x)
return x
def weights_init(m):
if isinstance(m, nn.Conv3d) or isinstance(m, nn.Linear):
init.xavier_uniform_(m.weight.data)
batch_size = 50
e = molgrid.ExampleProvider(data_root=datadir+"/structs",balanced=True,shuffle=True)
e.populate(fname)
gmaker = molgrid.GridMaker()
dims = gmaker.grid_dimensions(e.num_types())
tensor_shape = (batch_size,)+dims
model = Net(dims).to('cuda')
model.apply(weights_init)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
input_tensor = torch.zeros(tensor_shape, dtype=torch.float32, device='cuda')
float_labels = torch.zeros(batch_size, dtype=torch.float32)
losses = []
for iteration in range(100):
#load data
batch = e.next_batch(batch_size)
gmaker.forward(batch, input_tensor, 0, random_rotation=False) #not rotating since convergence is faster this way
batch.extract_label(0, float_labels)
labels = float_labels.long().to('cuda')
optimizer.zero_grad()
output = model(input_tensor)
loss = F.cross_entropy(output,labels)
loss.backward()
optimizer.step()
losses.append(float(loss))