• Stars
    star
    217
  • Rank 182,446 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created about 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Graph Diffusion Convolution, as proposed in "Diffusion Improves Graph Learning" (NeurIPS 2019)

GDC

Reference implementation (example) of the model proposed in the paper:

Diffusion Improves Graph Learning
by Johannes Gasteiger, Stefan Weißenberger, Stephan Günnemann
Published at NeurIPS 2019.

Run the code

This repository primarily contains a demonstration of enhancing a graph convolutional network (GCN) with graph diffusion convolution (GDC) in the notebook gdc_demo.ipynb.

Requirements

The repository uses these packages:

pyyaml
tqdm>=4.36
numpy
scipy
seaborn
pytorch>=1.3
pytorch_geometric

PyTorch Geometric

GDC is also implemented as a transformation (preprocessing step) in PyTorch Geometric. So you can just apply it to your own dataset and see how your existing PyG model improves!

Contact

Please contact [email protected] in case you have any questions.

Cite

Please cite our paper if you use the model or this code in your own work:

@inproceedings{gasteiger_diffusion_2019,
  title = {Diffusion Improves Graph Learning},
  author = {Gasteiger, Johannes and Wei{\ss}enberger, Stefan and G{\"u}nnemann, Stephan},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year = {2019}
}