Python-FLINT
Python extension module wrapping FLINT (Fast Library for Number Theory) and Arb (arbitrary-precision ball arithmetic). Features:
- Integers, rationals, integers mod n
- Real and complex numbers with rigorous error tracking
- Polynomials, power series and matrices over all the above types
- Lots of mathematical functions
Documentation: http://fredrikj.net/python-flint/
Repository: https://github.com/flintlib/python-flint/
Author: Fredrik Johansson [email protected]
Installation
For Windows (x86-64) or OSX (x86-64 or arm64) or Linux (x86-64
manylinux_2_17
) there are binary wheels for python-flint on PyPI. For these
platforms python-flint can be installed simply with pip
pip install python-flint
Alternatively python-flint can be installed using conda
conda install -c conda-forge python-flint
Build from source
For other platforms or architectures installation needs to build from source. First install both FLINT 2.9.0 and Arb 2.23. Note that for python-flint 0.4 only these exact versions of FLINT and Arb will work. While some Linux distributions may provide FLINT and Arb it is unlikely that they will provide the exact versions required (e.g. for Ubuntu only Ubuntu 23.04 provides these versions at the time of writing).
See here for instructions on building FLINT and Arb:
The latest release of Python-FLINT can then be built and installed using:
pip install 'cython>=3' numpy wheel
pip install --no-build-isolation python-flint
Python-FLINT can also be installed from a git checkout or a source archive as follows:
pip install 'cython>=3' numpy wheel
pip install --no-build-isolation .
A script that builds and installs FLINT, Arb and Python-FLINT that is tested on Ubuntu can be found in the git repo here:
See the documentation for further notes on building and installing Python-FLINT:
Examples
Import Python-FLINT:
>>> from flint import *
Number-theoretic functions:
>>> fmpz(1000).partitions_p()
24061467864032622473692149727991
>>> fmpq.bernoulli(64)
-106783830147866529886385444979142647942017/510
Polynomial arithmetic:
>>> a = fmpz_poly([1,2,3]); b = fmpz_poly([2,3,4]); a.gcd(a * b)
3*x^2 + 2*x + 1
>>> a = fmpz_poly(list(range(10001))); b = fmpz_poly(list(range(10000))); a.gcd(a * b).degree()
10000
>>> x = fmpz_poly([0,1]); ((1-x**2)*(1+x**3)**3*(1+x+2*x)).factor()
(-1, [(3*x + 1, 1), (x + (-1), 1), (x^2 + (-1)*x + 1, 3), (x + 1, 4)])
Matrix arithmetic:
>>> fmpz_mat([[1,1],[1,0]]) ** 10
[89, 55]
[55, 34]
>>> fmpq_mat.hilbert(10,10).det()
1/46206893947914691316295628839036278726983680000000000
Numerical evaluation:
>>> showgood(lambda: (arb.pi() * arb(163).sqrt()).exp() - 640320**3 - 744, dps=25)
-7.499274028018143111206461e-13
>>> showgood(lambda: (arb.pi() * 10**100 + arb(1)/1000).sin(), dps=25)
0.0009999998333333416666664683
Numerical integration:
>>> ctx.dps = 30
>>> acb.integral(lambda x, _: (-x**2).exp(), -100, 100) ** 2
[3.141592653589793238462643383 +/- 3.11e-28]
To do
- Write more tests and add missing docstrings
- Wrap missing flint types: finite fields, p-adic numbers, multiprecision integer mods, rational functions
- Vector or array types (maybe)
- Many convenience methods
- Write generic implementations of functions missing for specific FLINT types
- Proper handling of special values in various places (throwing Python exceptions instead of aborting, etc.)
- Various automatic conversions
- Conversions to and from external types (numpy, sage, sympy, mpmath, gmpy)
- Improved printing and string input/output
- IPython hooks (TeX pretty-printing etc.)
CHANGELOG
0.5.0
- gh-63: The
roots
method ofarb_poly
, andnmod_poly
is no longer supported. Useacb_roots(p).roots()
to get the old behaviour of returning the roots asacb
. Note that theroots
method offmpz_poly
andfmpq_poly
currently returns the complex roots of the polynomial.
License
Python-FLINT is licensed MIT. FLINT and Arb are LGPL v2.1+.