• Stars
    star
    432
  • Rank 100,650 (Top 2 %)
  • Language
    C++
  • License
    BSD 3-Clause "New...
  • Created over 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

VINS-Fusion, VINS-Fisheye, OpenVINS, EnVIO, ROVIO, S-MSCKF, ORB-SLAM2, NVIDIA Elbrus application of different sets of cameras and imu on different board including desktop and Jetson boards

VINS-application

Mainly focused on Build process and explanation

โ–  ROS1 algorithms:

โ— VINS-Fusion, VINS-Fusion-GPU, VINS-Fisheye, OpenVINS, EnVIO, ROVIO, S-MSCKF, ORB-SLAM2, DM-VIO

โ–  ROS2 algorithms:

โ— NVIDIA Isaac Elbrus


This repository contains many branches! as following:

โ–  ROS1 algorithms:

โ–  ROS2 algorithms:



Result clips: here

โ— Tested on: Jetson Xavier NX, Jetson Xavier AGX, Jetson TX2, Intel i9-10900k, i7-6700k, i7-8700k, i5-9600k

VINS-Fusion for PX4 with Masking: here

  • frame changed from world to map


Index

0. Algorithms:

โ–  ROS1 Algorithms:

  • VINS-Fusion CPU version / GPU version
    • Mainly uses Ceres-solver, OpenCV and Eigen and performance of VINS is strongly proportional to CPU performance and some parameters
  • VINS-Fisheye: VINS-Fusion's extension with more camera_models and CUDA acceleration
    • only for OpenCV 3.4.1 and Jetson TX2 (I guess, I failed on i9-10900k + RTX3080)
  • ROVIO: Iterative EKF based VIO, direct method (using patch)
  • S-MSCKF: Stereo version of MSCKF VIO
  • ORB-SLAM2: Feature based VO, Local and Global bundle adjustment
  • OpenVINS: MSCKF based VINS
  • EnVIO: Iterated-EKF Ensemble VIO based on ROVIO
  • DM-VIO: Monocular VIO with delayed marginalization and pose graph bundle adjustment based on DSO

โ–  ROS2 Algorithms:

  • NVIDIA Isaac Elbrus: GPU-accelerated Stereo Visual SLAM
    • Ubuntu 20.04: CUDA 11.4, 11.5 (not 11.6), NVIDIA-graphic driver from 470.103.01
    • Jetpack: 4.6.1 on Jetson Xavier AGX, Jetson Xavier NX

1. Parameters

2. Prerequisites

โ— Ceres solver and Eigen: Mandatory for VINS (build Eigen first)

โ— CUDA: Necessary for GPU version

โ— cuDNN: Necessary for GPU version

โ— OpenCV with CUDA and cuDNN: Necessary for GPU version

โ— CV_Bridge with Built OpenCV: Necessary for GPU version, and general ROS usage

โ— USB performance: Have to improve performance of sensors with USB

โ— IMU-Camera Calibration: Synchronization, time offset, extrinsic parameter

โ— IMU-Camera rotational extrinsic: Rotational extrinsic between IMU and Cam

3. Installation and Execution

โ–  ROS1 Algorithms:

โ–  ROS2 Algorithms:

4. Comparison & Application results

5. VINS on mini onboard PCs




1. Parameters

โ— VINS-Fusion:

[click to see]
  • Camera frame rate
    • lower - low time delay, poor performance
    • higher - high time delay, better performance
    • has to be set from camera launch file: 10~30hz
  • Max tracking Feature number max_cnt
    • 100~150, same correlation as camera frame rates
  • time offset between IMU and cameras estimated_td: 1, td : value from kalibr
  • GPU acceleration use_gpu: 1, use_gpu_acc_flow: 1 (for GPU version)
  • Threads enabling - multiple_thread: 1


2. Prerequisites

โ— Ceres solver and Eigen: Mandatory for VINS

[click to see]
$ wget -O eigen.zip https://gitlab.com/libeigen/eigen/-/archive/3.3.7/eigen-3.3.7.zip #check version
$ unzip eigen.zip
$ cd eigen-3.3.7
& mkdir build && cd build
$ cmake .. && sudo make install
$ git clone https://gitlab.com/libeigen/eigen.git
$ cd eigen 
$ mkdir build && cd build
$ cmake .. && sudo make install
$ sudo apt-get install -y cmake libgoogle-glog-dev libatlas-base-dev libsuitesparse-dev
$ wget http://ceres-solver.org/ceres-solver-1.14.0.tar.gz
$ tar zxf ceres-solver-1.14.0.tar.gz
$ mkdir ceres-bin
$ mkdir solver && cd ceres-bin
$ cmake ../ceres-solver-1.14.0 -DEXPORT_BUILD_DIR=ON -DCMAKE_INSTALL_PREFIX="../solver"  #good for build without being root privileged and at wanted directory
$ make -j8 # 8 : number of cores
$ make test
$ make install


โ— CUDA: Necessary for GPU version

[click to see]
  • Install CUDA and Graphic Driver:
    $ sudo apt install gcc make
    get the right version of CUDA(with graphic driver) .deb file at https://developer.nvidia.com/cuda-downloads
    follow the installation instructions there!
        # .run file can be used as nvidia graphic driver. But, .deb file is recommended to install tensorRT further.

        # if want to install only graphic driver, get graphic driver install script at https://www.nvidia.com/Download/index.aspx?lang=en-us
        # sudo ./NVIDIA_<graphic_driver_installer>.run --dkms
        # --dkms option is recommended when you also install NVIDIA driver, to register it along with kernel
        # otherwise, NVIDIA graphic driver will be gone after kernel upgrade via $ sudo apt upgrade
    $ sudo reboot

    $ gedit ~/.bashrc
    # type and save
    export PATH=<CUDA_PATH>/bin:$PATH #ex: /usr/local/cuda-11.1
    export LD_LIBRARY_PATH=<CUDA_PATH>/lib64:$LD_LIBRARY_PATH #ex : /usr/local/cuda-11.1
    $ . ~/.bashrc

    # check if installed well
    $ dpkg-query -W | grep cuda
  • check CUDA version using nvcc --version
# check installed cuda version
$ nvcc --version
# if nvcc --version does not print out CUDA,
$ gedit ~/.profile
# type below and save
export PATH=<CUDA_PATH>/bin:$PATH #ex: /usr/local/cuda-11.1
export LD_LIBRARY_PATH=<CUDA_PATH>/lib64:$LD_LIBRARY_PATH #ex : /usr/local/cuda-11.1
$ source ~/.profile

โ— Trouble shooting for NVIDIA driver or CUDA: please see /var/log/cuda-installer.log or /var/log/nvidia-install.log

  • Installation failed. See log at /var/log/cuda-installer.log for details => mostly because of X server is being used.
    • turn off X server and install.
# if you are using lightdm
$ sudo service lightdm stop

# or if you are using gdm3
$ sudo service gdm3

# then press Ctrl+Alt+F3 -> login with your ID/password
$ sudo sh cuda_<version>_linux.run
  • The kernel module failed to load. Secure boot is enabled on this system, so this is likely because it was not signed by a key that is trusted by the kernel....
    • turn off Secure Boot as below reference
    • If you got this case, you should turn off Secure Boot and then turn off X server (as above) both.

โ— cuDNN: strong library for Neural Network used with CUDA

[click to see]
$ sudo tar zxf cudnn.tgz
$ sudo cp extracted_cuda/include/* <CUDA_PATH>/include/   #ex /usr/local/cuda-11.1/include/
$ sudo cp -P extracted_cuda/lib64/* <CUDA_PATH>/lib64/   #ex /usr/local/cuda-11.1/lib64/
$ sudo chmod a+r <CUDA_PATH>/lib64/libcudnn*   #ex /usr/local/cuda-11.1/lib64/libcudnn*



โ— OpenCV with CUDA and cuDNN

โ–  Ubuntu 18.04 - this repo mainly targets ROS1 for Ubuntu 18.04

[Click to see]
  • Build OpenCV with CUDA - references: link 1, link 2
    • for Xavier do as below or sh file from jetsonhacks here
    • If want to use C API (e.g. Darknet YOLO) with OpenCV3, then:
      • Patch as here to use other version (3.4.1 is the best)
        • should comment the /usr/local/include/opencv2/highgui/highgui_c.h line 139 as here after install
  • -D OPENCV_GENERATE_PKGCONFIG=YES option is also needed for OpenCV 4.X
    • and copy the generated opencv4.pc file to /usr/local/lib/pkgconfig or /usr/lib/aarch64-linux-gnu/pkgconfig for jetson boards
$ sudo apt-get purge libopencv* python-opencv
$ sudo apt-get update
$ sudo apt-get install -y build-essential pkg-config
$ sudo apt-get install -y cmake libavcodec-dev libavformat-dev libavutil-dev \
    libglew-dev libgtk2.0-dev libgtk-3-dev libjpeg-dev libpng-dev libpostproc-dev \
    libswscale-dev libtbb-dev libtiff5-dev libv4l-dev libxvidcore-dev \
    libx264-dev qt5-default zlib1g-dev libgl1 libglvnd-dev pkg-config \
    libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev mesa-utils #libeigen3-dev # recommend to build from source : http://eigen.tuxfamily.org/index.php?title=Main_Page
$ sudo apt-get install python2.7-dev python3-dev python-numpy python3-numpy
$ mkdir <opencv_source_directory> && cd <opencv_source_directory>


# check version
$ wget -O opencv.zip https://github.com/opencv/opencv/archive/3.4.1.zip # check version
$ unzip opencv.zip
$ cd <opencv_source_directory>/opencv 

$ wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/3.4.1.zip # check version
$ unzip opencv_contrib.zip

$ mkdir build && cd build
    
# check your BIN version : http://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
# 8.6 for RTX3080 7.2 for Xavier, 5.2 for GTX TITAN X, 6.1 for GTX TITAN X(pascal), 6.2 for TX2
# -D BUILD_opencv_cudacodec=OFF #for cuda10-opencv3.4
    
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \
      -D CMAKE_C_COMPILER=gcc-6 \
      -D CMAKE_CXX_COMPILER=g++-6 \
      -D CMAKE_INSTALL_PREFIX=/usr/local \
      -D OPENCV_GENERATE_PKGCONFIG=YES \
      -D WITH_CUDA=ON \
      -D OPENCV_DNN_CUDA=ON \
      -D WITH_CUDNN=ON \
      -D CUDA_ARCH_BIN=8.6 \
      -D CUDA_ARCH_PTX=8.6 \
      -D ENABLE_FAST_MATH=ON \
      -D CUDA_FAST_MATH=ON \
      -D WITH_CUBLAS=ON \
      -D WITH_LIBV4L=ON \
      -D WITH_GSTREAMER=ON \
      -D WITH_GSTREAMER_0_10=OFF \
      -D WITH_CUFFT=ON \
      -D WITH_NVCUVID=ON \
      -D WITH_QT=ON \
      -D WITH_OPENGL=ON \
      -D WITH_IPP=OFF \
      -D WITH_V4L=ON \
      -D WITH_1394=OFF \
      -D WITH_GTK=ON \
      -D WITH_EIGEN=ON \
      -D WITH_FFMPEG=ON \
      -D WITH_TBB=ON \
      -D BUILD_opencv_cudacodec=OFF \
      -D CUDA_NVCC_FLAGS="--expt-relaxed-constexpr" \
      -D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib-3.4.1/modules \
      ../
$ time make -j8 # 8 : numbers of core
$ sudo make install
$ sudo rm -r <opencv_source_directory> #optional for saving disk, but leave this folder to uninstall later, if you need.

โ— Trouble shooting for OpenCV build error:

  • Please include the appropriate gl headers before including cuda_gl_interop.h => reference 1, 2, 3
  • modules/cudacodec/src/precomp.hpp:60:37: fatal error: dynlink_nvcuvid.h: No such file or directory compilation terminated. --> for CUDA version 10
    • => reference here
    • cmake ... -D BUILD_opencv_cudacodec=OFF ...
  • CUDA_nppicom_LIBRARY not found
    • $ sudo apt-get install nvidia-cuda-toolkit
    • or Edit opencv/cmake/OpenCVDetectCUDA.cmake as follows:
        ...
        ...
        if(CUDA_FOUND)
            set(HAVE_CUDA 1)
            ocv_list_filterout(CUDA_nppi_LIBRARY "nppicom") #this line is added
            ocv_list_filterout(CUDA_npp_LIBRARY "nppicom") #this line is added
            if(WITH_CUFFT)
                set(HAVE_CUFFT 1)
            endif()
        ...
        ...

โ–  Ubuntu 20.04 - this repo mainly targets ROS2 for Ubuntu 20.04

[Click to see]
  • Build OpenCV with CUDA - references: link 1
  • -D PYTHON3_PACKAGES_PATH=/usr/local/lib/python3.8/dist-packages
    • This is needed to prevent No module name cv2 when import cv2 in Python3
## optional, I just leave default OpenCV from ROS2, since I can set proper PATHS for desired OpenCV versions
## If you cannot, just do below:
$ sudo apt-get purge libopencv*
## (But you will have to sudo apt install ros-foxy-desktop again, when you need other packages related to this)

$ sudo apt-get purge python-opencv python3-opencv
$ pip uninstall opencv-python
$ sudo apt-get update
$ sudo apt-get install -y build-essential pkg-config
$ sudo apt-get install -y cmake libavcodec-dev libavformat-dev libavutil-dev \
    libglew-dev libgtk2.0-dev libgtk-3-dev libjpeg-dev libpng-dev libpostproc-dev \
    libswscale-dev libtbb-dev libtiff5-dev libv4l-dev libxvidcore-dev \
    libx264-dev qt5-default zlib1g-dev libgl1 libglvnd-dev pkg-config \
    libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev mesa-utils #libeigen3-dev # recommend to build from source : http://eigen.tuxfamily.org/index.php?title=Main_Page
$ sudo apt-get install python3-dev python3-numpy
$ mkdir <opencv_source_directory> && cd <opencv_source_directory>


# check version
$ wget -O opencv.zip https://github.com/opencv/opencv/archive/4.5.5.zip # check version
$ unzip opencv.zip
$ cd <opencv_source_directory>/opencv 

$ wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.5.5.zip # check version
$ unzip opencv_contrib.zip

$ mkdir build && cd build
    
# check your CUDA_ARCH_BIN and CUDA_ARCH_PTX version : http://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
# 8.6 for RTX3080 7.2 for Xavier, 5.2 for GTX TITAN X, 6.1 for GTX TITAN X(pascal), 6.2 for TX2
# -D BUILD_opencv_cudacodec=OFF #for cuda10-opencv3.4
    
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \
      -D CMAKE_C_COMPILER=gcc-9 \
      -D CMAKE_CXX_COMPILER=g++-9 \
      -D CMAKE_INSTALL_PREFIX=/usr/local \
      -D OPENCV_GENERATE_PKGCONFIG=YES \
      -D PYTHON_EXECUTABLE=/usr/bin/python3.8 \
      -D PYTHON2_EXECUTABLE="" \
      -D BUILD_opencv_python3=ON \
      -D BUILD_opencv_python2=OFF \
      -D PYTHON3_PACKAGES_PATH=/usr/local/lib/python3.8/dist-packages \
      -D BUILD_NEW_PYTHON_SUPPORT=ON \
      -D OPENCV_SKIP_PYTHON_LOADER=ON \
      -D WITH_CUDA=ON \
      -D OPENCV_DNN_CUDA=ON \
      -D WITH_CUDNN=ON \
      -D CUDA_ARCH_BIN=8.6 \
      -D CUDA_ARCH_PTX=8.6 \
      -D ENABLE_FAST_MATH=ON \
      -D CUDA_FAST_MATH=ON \
      -D WITH_CUBLAS=ON \
      -D WITH_LIBV4L=ON \
      -D WITH_GSTREAMER=ON \
      -D WITH_GSTREAMER_0_10=OFF \
      -D WITH_CUFFT=ON \
      -D WITH_NVCUVID=ON \
      -D WITH_QT=ON \
      -D WITH_OPENGL=ON \
      -D WITH_IPP=OFF \
      -D WITH_V4L=ON \
      -D WITH_1394=OFF \
      -D WITH_GTK=ON \
      -D WITH_EIGEN=ON \
      -D WITH_FFMPEG=ON \
      -D WITH_TBB=ON \
      -D BUILD_opencv_cudacodec=OFF \
      -D CUDA_NVCC_FLAGS="--expt-relaxed-constexpr" \
      -D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib-4.5.5/modules \
      ../
$ time make -j20 # 20 : numbers of core
$ sudo make install
$ sudo rm -r <opencv_source_directory> #optional for saving disk, but leave this folder to uninstall later, if you need.

โ— Trouble shooting for OpenCV build error:

  • No troubles found yet


โ— CV_Bridge with built OpenCV: Necessary for whom built OpenCV manually from above

โ–  ROS1-cv_bridge

[Click: CV_bridge with OpenCV 3.X version]
  • If OpenCV with CUDA were built manually, build cv_bridge manually also
$ cd ~/catkin_ws/src && git clone https://github.com/ros-perception/vision_opencv
# since ROS Noetic is added, we have to checkout to melodic tree
$ cd vision_opencv && git checkout origin/melodic
$ gedit vision_opencv/cv_bridge/CMakeLists.txt
  • Edit OpenCV PATHS in CMakeLists and include cmake file
#when error, try both lines
find_package(OpenCV 3 REQUIRED PATHS /usr/local/share/OpenCV NO_DEFAULT_PATH
#find_package(OpenCV 3 HINTS /usr/local/share/OpenCV NO_DEFAULT_PATH
  COMPONENTS
    opencv_core
    opencv_imgproc
    opencv_imgcodecs
  CONFIG
)
include(/usr/local/share/OpenCV/OpenCVConfig.cmake) #under catkin_python_setup()
$ cd .. && catkin build cv_bridge

[Click: CV_bridge with OpenCV 4.X version]
$ cd ~/catkin_ws/src && git clone https://github.com/ros-perception/vision_opencv
# since ROS Noetic is added, we have to checkout to melodic tree
$ cd vision_opencv && git checkout origin/melodic
$ gedit vision_opencv/cv_bridge/CMakeLists.txt
  • Add options and edit OpenCV PATHS in CMakeLists
# add right after project()
set(CMAKE_CXX_STANDARD 11) 

# edit find_package(OpenCV)
#find_package(OpenCV 4 REQUIRED PATHS /usr/local/share/opencv4 NO_DEFAULT_PATH
find_package(OpenCV 4 REQUIRED
  COMPONENTS
    opencv_core
    opencv_imgproc
    opencv_imgcodecs
  CONFIG
)
include(/usr/local/lib/cmake/opencv4/OpenCVConfig.cmake)
  • Edit cv_bridge/src/CMakeLists.txt
# line number 35, Edit 3 -> 4
if (OpenCV_VERSION_MAJOR VERSION_EQUAL 4)
  • Edit cv_bridge/src/module_opencv3.cpp
// line number 110
//    UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const
    UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const

// line number 140
//    bool allocate(UMatData* u, int accessFlags, UMatUsageFlags usageFlags) const
    bool allocate(UMatData* u, AccessFlag accessFlags, UMatUsageFlags usageFlags) const
$ cd .. && catkin build cv_bridge

โ–  ROS2-cv_bridge

[Click: CV_bridge with OpenCV 4.X version]
  • If OpenCV with CUDA were built manually, build cv_bridge manually also
$ cd ~/colcon_ws/src && git clone https://github.com/ros-perception/vision_opencv
$ cd vision_opencv
$ git checkout origin/ros2

$ cd ~/colcon_ws
$ colcon build --symlink-install --packages-select cv_bridge image_geometry --allow-overriding cv_bridge image_geometry
$ source install/setup.bash


โ— USB performance : Have to improve performance of sensors with USB

[click to see]
  • Link : here for x86_64 desktops
  • TX1/TX2 : here
  • For Xavier : here
$ sudo ./flash.sh -k kernel -C "usbcore.usbfs_memory_mb=1000" -k kernel-dtb jetson-xavier mmcblk0p1



โ— Calibration : Kalibr -> synchronization, time offset, extrinsic parameter

[click to see]
  • Kalibr -> synchronization, time offset
  • For ZED cameras : here
  • When Calibrating Fisheye camera like T265
    • Try with MEI camera model, as here, which is omni-radtan in Kalibr
    • and try this Pull to deal with NaNs here

โ— Trouble shooting for Kalibr errors

  • ImportError: No module named Image reference
$ gedit kalibr/aslam_offline_calibration/kalibr/python/kalibr_camera_calibration/MulticamGraph.py
#import Image
from PIL import Image
  • focal length initialization error
 $ gedit kalibr/aslam_cv/aslam_cameras/include/aslam/cameras/implementation/PinholeProjection.hpp
 # edit if sentence in line 781
 # comment from line 782 to 795
 f_guesses.push_back(2000.0) #initial guess of focal length!!!!
  • cameras are not connected
 $ gedit kalibr/aslam_offline_calibration/kalibr/python/kalibr_calibrate_cameras
 # comment from line 201 to 205

โ— IMU-Camera rotational extrinsic example

[click to see]
  • Between ROS standard body(IMU) and camera

  • Left view : Between ROS standard body(IMU) and down-pitched (look downward) camera




3. Installation and Execution

โ–  ROS1 Algorithms:

โ— VINS-Fusion

[with `OpenCV3`(original): click to see]
  • git clone and build from source
$ cd ~/catkin_ws/src
$ git clone https://github.com/HKUST-Aerial-Robotics/VINS-Fusion #CPU
or 
$ git clone https://github.com/pjrambo/VINS-Fusion-gpu #GPU
$ cd .. && catkin build camera_models # camera models first
$ catkin build

Before build VINS-Fusion, process below could be required.

  • For GPU version, Edit CMakeLists.txt for loop_fusion and vins_estimator
$ cd ~/catkin_ws/src/VINS-Fusion-gpu/loop_fusion && gedit CMakeLists.txt
or
$ cd ~/catkin_ws/src/VINS-Fusion-gpu/vins_estimator && gedit CMakeLists.txt
##For loop_fusion : line 19
#find_package(OpenCV)
include(/usr/local/share/OpenCV/OpenCVConfig.cmake)

##For vins_estimator : line 20
#find_package(OpenCV REQUIRED)
include(/usr/local/share/OpenCV/OpenCVConfig.cmake)

[with `OpenCV4`: click to see]
  • git clone and build, few cv codes are changed from original repo.
$ cd ~/catkin_ws/src
$ git clone https://github.com/engcang/vins-application #Only CPU version yet
$ cd vins-application

$ mv vins_estimator ..
$ mv camera_models ..
$ cd ..
$ rm -r vins-application

$ cd .. 
$ catkin build

โ— Trouble shooting for VINS-Fusion

[click to see]
  • Aborted error when running vins_node :
 $ echo "export MALLOC_CHECK_=0" >> ~/.bashrc
 $ source ~/.bashrc
  • If want to try to deal with NaNs, refer here


โ— VINS-Fisheye

only for OpenCV 3.4.1 and Jetson TX2 (I guess yet, I failed on i9-10900k + RTX3080)

[click to see]
  • Get libSGM and install with OpenCV option as below:
$ git clone https://github.com/fixstars/libSGM
$ cd libSGM
$ git submodule update --init

check and edit CMakeLists.txt
$ gedit CMakeLists.txt
Edit
BUILD_OPENCV_WRAPPER=ON and ENABLE_TESTS=ON

$ mkdir build && cd build
$ cmake .. -DBUILD_OPENCV_WRAPPER=ON -DENABLE_TESTS=ON
$ make -j6
$ sudo make install

do test
$ cd libSGM/build/test && ./sgm-test
  • Get VINS-Fisheye and install
$ cd ~/catkin_ws/src
$ git clone https://github.com/xuhao1/VINS-Fisheye
$ cd ..

build camera_models first
$ catkin build camera_models

$ gedit src/VINS-Fisheye/vins_estimator/CMakeLists.txt
edit as below:
set(ENABLE_BACKWARD false)
or
$ sudo apt install libdw-dev

$ catkin build

โ— OpenVINS

[click to see]
  • Get OpenVINS and install: refer doc, git
$ cd ~/catkin_ws/src
$ git clone https://github.com/rpng/open_vins/
$ cd ..
$ catkin build

โ— EnVIO

[click to see]
$ cd ~/catkin_ws/src
$ git clone https://github.com/lastflowers/envio.git
$ cd ..

$ catkin_make

or, if you want to use it with catkin build,
then

$ gedit src/envio/CMakeLists.txt
comment two lines, line 4 and 5
#set(CMAKE_CXX_COMPILER "/usr/bin/g++-5")
#set(CMAKE_C_COMPILER "/usr/bin/gcc-5")

$ catkin build    

โ— S-MSCKF

[click to see]

โ— Installation

 $ sudo apt-get install libsuitesparse-dev
 $ cd ~/catkin_ws/src && https://github.com/KumarRobotics/msckf_vio
 $ cd ~/catkin_ws && catkin build msckf_vio -DCMAKE_BUILD_TYPE=Release

โ— ROVIO

[click to see]

โ— Requirements

  • ROVIO receives input image as gray scale image - convert the RGB image as this file
  • Config files can be generated directly from Kalibr results:
$ rosrun kalibr kalibr_rovio_config --cam <cam-chain.yaml filename>
  • After using kalibr to convert the calibration result files to rovio_config files,
    • Make sure to Edit Camera1 and Camera2 into Camera0 and Camera1 in .info file
    • Make sure to Add Velocity Updates block in .info file

โ— Installation

$ cd ~/catkin_ws/src && git clone https://github.com/ANYbotics/kindr
$ cd .. && catkin build -j8
  • Install ROVIO
$ cd ~/catkin_ws/src && git clone https://github.com/ethz-asl/rovio
$ cd rovio && git submodule update --init --recursive

$ cd ..
$ catkin build rovio --cmake-args -DCMAKE_BUILD_TYPE=Release

# With with opengl scene (optional)
$ sudo apt-get install freeglut3-dev libglew-dev
$ catkin build rovio --cmake-args -DCMAKE_BUILD_TYPE=Release -DMAKE_SCENE=ON

โ— ORB-SLAM2

[click to see]

โ— Installation

 $ cd ~/catkin_ws/src && git clone https://github.com/appliedAI-Initiative/orb_slam_2_ros
 $ cd .. && rosdep install --from-paths src --ignore-src -r -y
 $ catkin build
  • highly recommend this pull request to speedup loading Vocabulary here

โ— DM-VIO

[click to see]
  • Install dependencies
$ sudo apt-get install cmake libsuitesparse-dev libeigen3-dev libboost-all-dev libyaml-cpp-dev libtbb-dev libgl1-mesa-dev libglew-dev pkg-config libegl1-mesa-dev libwayland-dev libxkbcommon-dev wayland-protocols -y

$ cd ~/your_workspace
$ git clone https://github.com/borglab/gtsam.git
$ cd gtsam
$ git checkout 4.2a6          # not strictly necessary but this is the version tested with.
$ mkdir build && cd build
$ cmake -DGTSAM_POSE3_EXPMAP=ON -DGTSAM_ROT3_EXPMAP=ON -DGTSAM_USE_SYSTEM_EIGEN=ON -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF ..
$ make -j
$ sudo make install

$ cd ~/your_workspace
$ git clone https://github.com/stevenlovegrove/Pangolin.git
$ cd Pangolin
$ git checkout v0.6
$ mkdir build && cd build
$ cmake ..
$ cmake --build .
$ sudo make install
  • Build DM-VIO and DM-VIO-ROS
$ cd ~/your_workspace
$ git clone https://github.com/lukasvst/dm-vio.git
$ cd dm-vio
$ mkdir build && cd build
$ cmake ..
$ make -j10
$ echo "export DMVIO_BUILD=`pwd`" >> ~/.bashrc && . ~/.bashrc

$ cd ~/your_workspace/src
$ git clone https://github.com/lukasvst/dm-vio-ros.git
$ cd ~/your_workspace
$ catkin build
$ . devel/setup.bash
$ sudo ldconfig
$ rosrun dmvio_ros node calib=camera_kaistvio.txt imuCalib=camchain_kaistvio.yaml settingsFile=setting_kaistvio.yaml mode=3 nogui=0 preset=1 quiet=1 useimu=1

โ–  ROS2 Algorithms:

โ— NVIDIA Isaac Elbrus

[click to see]

โ— Requirements

  • PC option1 - Ubuntu 20.04
    • CUDA: 11.4-11.5 (11.6 cannot install VPI 1.1.11)
    • NVIDIA Graphic driver >= 470.103.01
    • (Important) NVIDIA VPI 1.1.11 (Only this version) - install with this files after CUDA installation
  • PC option2 - Jetpack 4.6.1 on Jetson Xavier AGX / NX
  • Topics: Raw stereo image + camera info topics + (Important!) /tf_static (including base_frame (e.g., camera_link) to left and right camera frame)

โ— Installation

$ sudo apt install git-lfs
$ cd ~/colcon_ws/src
$ git clone https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_visual_slam &&
git clone https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_image_pipeline &&
git clone https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common
$ cd ..
$ rosdep install -i -r --from-paths src --rosdistro foxy -y
$ colcon build --symlink-install && source install/setup.bash

โ— Run

  • Edit remapping topic names in the launch file below, before launching it.
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.

    ...

import launch
from launch_ros.actions import ComposableNodeContainer, Node
from launch_ros.descriptions import ComposableNode

    ...
    
        remappings=[('stereo_camera/left/image', '/camera/infra1/image_rect_raw'),
                    ('stereo_camera/left/camera_info', '/camera/infra1/camera_info'),
                    ('stereo_camera/right/image', '/camera/infra2/image_rect_raw'),
                    ('stereo_camera/right/camera_info', '/camera/infra2/camera_info')]
    )

    ...
    
  • If you want to run it with bag file, then use or refer this launch file
    • since /tf_static cannot be recorded in bag file, static_transform_publisher should be added in the launch file as these lines

4. Comparison & Application

  • Conversion ROS topics into nav_msgs/Path to visualize in Rviz: use this github
  • Conversion compressed Images into raw Images: use this code

Simulation

  • VINS-Mono on FlightGoggles: youtube, with CPU youtube
  • ROVIO on FlightGoggles: youtube
  • ORB-SLAM2 on FlightGoggles: youtube
  • VINS with Loop fusion vs VINS on FlightGoggles: youtube
  • VINS-Mono vs ROVIO: youtube
  • VINS-Mono vs ROVIO vs ORB-SLAM2: youtube
  • VINS-Fusion (Stereo) vs S-MSCKF on FlightGoggles: youtube
  • VINS-Fusion (Stereo) based autonomous flight and 3D mapping using RGB-D camera: youtube

Real world

  • Hand-held - VINS-Mono with pointgrey cam, myAHRS+ imu on Jetson Xavier AGX: youtube, moved faster : youtube

  • Hand-held - ROVIO with Intel D435i on Jetson Xavier AGX: youtube

  • Hand-held - ORB-SLAM2 with Intel D435i on Jetson Xavier AGX: youtube

  • Hand-held - VINS(GPU version) with pointgrey, myAHRS at Intel i7-8700k, TITAN RTX: youtube

  • Hand-held - VINS(GPU version, Stereo) with Intel D435i, on Xavier AGX, max CPU clocked: youtube and youtube2 : screen

  • Hand-held - VINS-Fusion (Stereo) with Intel D435i and Pixhawk4 mini fused with T265 camera: here

  • Hand-held - VINS-Fusion (stereo) with Intel D435i and Pixhawk4 mini on 1km long underground tunnel: here

  • Hand-held - VINS-Fusion GPU version test using T265: here

  • Hand-held - VINS-Fusion (stereo) test using OAK-D: here

  • Hand-held - VINS-Fusion (stereo) test using OAK-D PRO: here

  • Real-Drone - VINS-Fusion with Intel D435i and Pixahwk4 mini on Real Hexarotor: here

  • Real-Drone - VINS-Fusion with Intel D435i and Pixahwk4 mini on Real Quadrotor: here

  • OpenVINS on KAIST VIO dataset: result youtube

  • EnVIO vs VINS-Fusion on KAIST VIO dataset: result youtube

  • DM-VIO vs VINS-Mono on KAIST VIO dataset: result youtube

  • NVIDIA Isaac Elbrus in real-world: result youtube


5. VINS on mini onboard PCs

  • Qualcomm RB5 vs Khadas VIM3 Pro - Video

More Repositories

1

SLAM-application

LeGO-LOAM, LIO-SAM, LVI-SAM, FAST-LIO2, Faster-LIO, VoxelMap, R3LIVE, Point-LIO, KISS-ICP, DLO, DLIO, Ada-LIO, PV-LIO, SLAMesh, ImMesh, FAST-LIO-MULTI application and comparison on Gazebo and real-world datasets. Installation and config files are provided.
Python
563
star
2

ros-yolo-sort

YOLO v3, v4, v5, v6, v7 + SORT tracking + ROS platform. Supporting: YOLO with Darknet, OpenCV(DNN), OpenVINO, TensorRT(tkDNN). SORT supports python(original) and C++. (Not Deep SORT)
C++
218
star
3

FAST-LIO-SAM-QN

A SLAM implementation combining FAST-LIO2 with pose graph optimization and loop closing based on Quatro and Nano-GICP
C++
163
star
4

FAST-LIO-SAM

a SLAM implementation combining FAST-LIO2 with pose graph optimization and loop closing based on LIO-SAM paper
C++
114
star
5

FAST-LIO-Localization-QN

A Map-based localization implementation combining FAST-LIO2 as an odometry with Quatro + Nano-GICP as a map matching method
C++
108
star
6

gazebo_maps

Self-made Gazebo maps and models for public
70
star
7

FAST-LIO-SAM-SC-QN

A SLAM implementation combining FAST-LIO2 with pose graph optimization and loop closing based on ScanContext, Quatro, and Nano-GICP
C++
57
star
8

oakd-ros-simple

OAK-D (OpenCV AI Kit camera) ROS simple codes with C++
C++
38
star
9

TensorRT_YOLOv9_ROS

(ROS, C++) YOLOv9 detection using TensorRT
C++
25
star
10

TROT-Q

ASCC2022 - TROT-Q: TRaversability and Obstacle aware Target tracking system for Quadruped robots
C++
24
star
11

exploration-algorithms

[Docker provided] How to build, install and run open-source exploration algorithms
C++
24
star
12

vins-fusion-gpu-no-ros

VINS-Fusion's non-ROS version (GPU version)
C++
20
star
13

FAST-LIO-Localization-SC-QN

A Map-based localization implementation combining FAST-LIO2 as an odometry with Quatro + Nano-GICP as a map matching method, and with ScanContext as a loop candidate detection method
C++
17
star
14

mavros-gazebo-application

mavros-gazebo-application
Python
14
star
15

PS4_Joystick_teleop_Mobile_Robots_ROS_Python

Simple Joystic_teleop_Mobile_Robots_ROS_Python using PS4 from SONY
Python
14
star
16

ieee_uav_2022

IEEE UAV Competition 2022 - Low Power Computer Vision Challenges (LPCVC): Chase
C
13
star
17

ROLAND

ROLAND: Robust Landing of UAV on Moving Platform using Object Detection and UWB based Extended Kalman Filter
C++
11
star
18

utm_to_pose_path

sensor_msgs/NavSatFix to geometry_msgs/PoseStamped and nav_msgs/Path
Python
11
star
19

tkdnn-ros

(ROS) YOLOv3, v4, v7 detection + Shelfnet semantic segmentation with TensorRT, utilizing tkDNN
C++
11
star
20

HC-SR04-UltraSonicSensor-ROS-RaspberryPi

HC-SR04-UltraSonicSensor-ROS-RaspberryPi using Python
Python
10
star
21

tf_to_trajectory

tf_to_trajectory: Convert ROS topics to nav_msgs/Path trajectory using simple rospy code for rviz
Python
8
star
22

CEO-MLCPP

CEO-MLCPP: Control Efficient and Obstacle-aware Multi-Layer Coverage Path Planner for 3D reconstruction with UAVs
C++
8
star
23

drone_auto_bag_record

MAVROS-PX4 drone auto ROS bag record on / off according to arming state
Python
6
star
24

utility_codes

A collection of various utility codes coded myself
Python
6
star
25

khnp_competition2021

KHNP Robot Competition 2021 / Several Missions with Autonomous Quadruped Robot with Gripping Arm!
C++
5
star
26

husky

MATLAB-ROS and Python-ROS to control the Husky_Clearpath with Velodyne-VLP16 LiDAR Sensor and ZED stereo camera
Python
4
star
27

KalmanFilter_Attitude

Animated Graph on Python code for LKF,EKF, and only accelerometer used attitude estimation
Python
3
star
28

Opencv_tutorial_Matlab_and_python

Using Opencv tutorial and instructions for installing Opencv for MATLAB(Mexopencv)
Python
2
star
29

orb-slam2-modified

C++
2
star
30

flightgoggles_angle_controller

flightgoggles_angle_controller
Python
2
star
31

turtlebot3

ROS-MATALB and ROS-Python for Turtlebot3_burger, mobile robot from Robotis
Python
2
star
32

cpp-reconstruction-application

Build and applying Coverage Path Planners for 3D reconstruction with UAVs
2
star
33

khnp_competition2022

KHNP Robot Competition 2022: KVRC2022 Autonomous drone challenge
C++
1
star
34

S-MSCKF-application

S-MSCKF from https://github.com/KumarRobotics/msckf_vio - application
C++
1
star
35

flightgoggles

Forked from http://flightgoggles.mit.edu. Coded by great friend, Winter-Guerra, when he was in MIT!
C++
1
star
36

AllowanceRobotics-Gazeboyz

Project page of AllowanceRobotics-Gazeboyz
Ruby
1
star
37

turtlebot2

ROS-MATLAB and ROS-Python for Turtlebot2, mobile robot with ROS
Python
1
star