• Stars
    star
    197
  • Rank 197,722 (Top 4 %)
  • Language
    Python
  • Created about 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Deep Reinforcement Learning Algorithms for solving Atari 2600 Games

AI for Atari

Using two Deep Reinforcement Learning Algorithms to solve Atari 2600 Games respectively. First: implements a Double DQN with Prioritized Experience Replay (Proportional Prioritization). Second: implements Asynchronous Advantage Actor-Critic (A3C) algorithm.

Reference

The implementation of Double DQN with Prioritized Experience Replay (Proportional Prioritization) is based on:

The implementation of Asynchronous Advantage Actor-Critic (A3C) algorithm is based on:

Environment

  • Python 2.7.x or 3.6.x
  • NumPy 1.13.1
  • TensorFlow 1.0.* or 1.1.* or 1.2.* or 1.3.*
  • Keras 2.0.8
  • SciPy 0.19.1 (For image pre-processing)
  • H5py 2.7.1 (For saving or loading Keras model)
  • Gym 0.9.3 (Provides Atari 2600 Games)