ggnewscale
ggnewscale
tries to make it painless to use multiple scales in
ggplot2
. Although originally intended to use with colour and fill, it
should work with any aes
, such as shape
, linetype
and the rest.
ggnewscale: spend 400% more time tweaking your ggplot!
For another way of defining multiple scales, you can also try relayer.
How to install
You can install ggnewscale from CRAN with:
install.packages("ggnewscale")
Or the development version with:
# install.packages("devtools")
devtools::install_github("eliocamp/ggnewscale@dev")
How to cite
If you use ggnewscale in a publication, I’ll be grateful if you cited it. To get the suggested citation for this (and any other R package) you can use:
citation("ggnewscale")
#>
#> To cite ggnewscale in publications use:
#>
#> Campitelli E (????). _ggnewscale: Multiple Fill and Colour Scales in
#> 'ggplot2'_. doi:10.5281/zenodo.2543762
#> <https://doi.org/10.5281/zenodo.2543762>, R package version 0.4.9.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{R-ggnewscale,
#> title = {ggnewscale: Multiple Fill and Colour Scales in 'ggplot2'},
#> author = {Elio Campitelli},
#> note = {R package version 0.4.9},
#> doi = {10.5281/zenodo.2543762},
#> }
If you use knitr, you can automate this with
knitr::write_bib(c("ggnewscale"), "packages.bib")
And then add citations with @R-ggnewscale
.
Click to see a list of some publications that have cited ggnewscale. Thanks!
[1] E. Akhil Prakash, T. Hromádková, T. Jabir, et al. “Dissemination of Multidrug Resistant Bacteria to the Polar Environment - Role of the Longest Migratory Bird Arctic Tern (Sterna Paradisaea)”. In: Science of The Total Environment (Dec. 31, 2021), p. 152727. ISSN: 0048-9697. DOI: 10.1016/j.scitotenv.2021.152727. https://www.sciencedirect.com/science/article/pii/S0048969721078062 (visited on 01/03/2022).
[2] R. AminiTabrizi, R. M. Wilson, J. D. Fudyma, et al. “Controls on Soil Organic Matter Degradation and Subsequent Greenhouse Gas Emissions Across a Permafrost Thaw Gradient in Northern Sweden”. In: Frontiers in Earth Science 8 (2020). ISSN: 2296-6463. DOI: 10.3389/feart.2020.557961. https://www.frontiersin.org/articles/10.3389/feart.2020.557961/full (visited on 03/03/2021).
[3] D. Baker, J. Lauer, A. Ortega, et al. “Effects of Phycosphere Bacteria on Their Algal Host Are Host Species-Specific and Not Phylogenetically Conserved”. In: Microorganisms 11.1 (1 Jan. 2023), p. 62. ISSN: 2076-2607. DOI: 10.3390/microorganisms11010062. https://www.mdpi.com/2076-2607/11/1/62 (visited on 12/28/2022).
[4] J. Botero, A. S. Sombolestani, M. Cnockaert, et al. “A Phylogenomic and Comparative Genomic Analysis of Commensalibacter, a Versatile Insect Symbiont”. In: Animal Microbiome 5.1 (Apr. 29, 2023), p. 25. ISSN: 2524-4671. DOI: 10.1186/s42523-023-00248-6. https://doi.org/10.1186/s42523-023-00248-6 (visited on 05/02/2023).
[5] I. N. Boys, A. G. Johnson, M. Quinlan, et al. Structural Homology Screens Reveal Poxvirus-Encoded Proteins Impacting Inflammasome-Mediated Defenses. Feb. 27, 2023. https://www.biorxiv.org/content/10.1101/2023.02.26.529821v1 (visited on 03/02/2023). preprint.
[6] H. Chen, G. Chew, N. Devapragash, et al. “The E3 Ubiquitin Ligase WWP2 Regulates Pro-Fibrogenic Monocyte Infiltration and Activity in Heart Fibrosis”. In: Nature Communications 13.1 (1 Nov. 30, 2022), p. 7375. ISSN: 2041-1723. DOI: 10.1038/s41467-022-34971-6. https://www.nature.com/articles/s41467-022-34971-6 (visited on 12/03/2022).
[7] X. Ding, K. Liu, Q. Yan, et al. “Sugar and Organic Acid Availability Modulate Soil Diazotroph Community Assembly and Species Co-Occurrence Patterns on the Tibetan Plateau”. In: Applied Microbiology and Biotechnology (Oct. 18, 2021). ISSN: 1432-0614. DOI: 10.1007/s00253-021-11629-9. https://doi.org/10.1007/s00253-021-11629-9 (visited on 10/21/2021).
[8] T. G. Drivas, A. Lucas, and M. D. Ritchie. “eQTpLot: A User-Friendly R Package for the Visualization of Colocalization between eQTL and GWAS Signals”. In: BioData Mining 14.1 (Jul. 17, 2021), p. 32. ISSN: 1756-0381. DOI: 10.1186/s13040-021-00267-6. https://doi.org/10.1186/s13040-021-00267-6 (visited on 07/21/2021).
[9] K. Giannakis, S. J. Arrowsmith, L. Richards, et al. “Evolutionary Inference across Eukaryotes Identifies Universal Features Shaping Organelle Gene Retention”. In: Cell Systems (Sep. 16, 2022). ISSN: 2405-4712. DOI: 10.1016/j.cels.2022.08.007. https://www.sciencedirect.com/science/article/pii/S2405471222003519 (visited on 09/19/2022).
[10] R. B. Gorodnichev, M. A. Kornienko, M. V. Malakhova, et al. “Isolation and Characterization of the First Zobellviridae Family Bacteriophage Infecting Klebsiella Pneumoniae”. In: International Journal of Molecular Sciences 24.4 (4 Jan. 2023), p. 4038. ISSN: 1422-0067. DOI: 10.3390/ijms24044038. https://www.mdpi.com/1422-0067/24/4/4038 (visited on 02/20/2023).
[11] M. C. Granovetter, L. Ettensohn, and M. Behrmann. “With Childhood Hemispherectomy, One Hemisphere Can Support—But Is Suboptimal for—Word and Face Recognition”. In: bioRxiv (Nov. 08, 2020), p. 2020.11.06.371823. DOI: 10.1101/2020.11.06.371823. https://www.biorxiv.org/content/10.1101/2020.11.06.371823v1 (visited on 03/03/2021).
[12] A. T. Hinsu, K. J. Panchal, R. J. Pandit, et al. “Characterizing Rhizosphere Microbiota of Peanut (Arachis Hypogaea L.) from Pre-Sowing to Post-Harvest of Crop under Field Conditions”. In: Scientific Reports 11.1 (1 Aug. 31, 2021), p. 17457. ISSN: 2045-2322. DOI: 10.1038/s41598-021-97071-3. https://www.nature.com/articles/s41598-021-97071-3 (visited on 09/06/2021).
[13] T. Hinzke, F. Tanneberger, C. Aggenbach, et al. “Response Patterns of Fen Sedges to a Nutrient Gradient Indicate Both Geographic Origin-Specific Genotypic Differences and Phenotypic Plasticity”. In: Wetlands 42.8 (Nov. 17, 2022), p. 113. ISSN: 1943-6246. DOI: 10.1007/s13157-022-01629-4. https://doi.org/10.1007/s13157-022-01629-4 (visited on 11/24/2022).
[14] M. Jenckel, I. Smith, T. King, et al. “Distribution and Genetic Diversity of Hepatitis E Virus in Wild and Domestic Rabbits in Australia”. In: Pathogens 10.12 (12 Dec. 2021), p. 1637. DOI: 10.3390/pathogens10121637. https://www.mdpi.com/2076-0817/10/12/1637 (visited on 12/21/2021).
[15] H. Jentsch and J. Weidinger. “Spatio-Temporal Analysis of Valley Wind Systems in the Complex Mountain Topography of the Rolwaling Himal, Nepal”. In: Atmosphere 13.7 (7 Jul. 2022), p. 1138. ISSN: 2073-4433. DOI: 10.3390/atmos13071138. https://www.mdpi.com/2073-4433/13/7/1138 (visited on 08/01/2022).
[16] B. Jiang, D. M. Weinstock, K. A. Donovan, et al. “ITK Degradation to Block T Cell Receptor Signaling and Overcome Therapeutic Resistance in T Cell Lymphomas”. In: Cell Chemical Biology 30.4 (Apr. 20, 2023), pp. 383-393.e6. ISSN: 2451-9456, 2451-9448. DOI: 10.1016/j.chembiol.2023.03.007. pmid: 37015223. https://www.cell.com/cell-chemical-biology/fulltext/S2451-9456(23)00086-7 (visited on 05/09/2023).
[17] P. M. Joubert and K. V. Krasileva. Distinct Genomic Contexts Predict Gene Presence-Absence Variation in Different Pathotypes of a Fungal Plant Pathogen. Feb. 17, 2023. https://www.biorxiv.org/content/10.1101/2023.02.17.529015v1 (visited on 02/20/2023). preprint.
[18] M. Jung, D. Wells, J. Rusch, et al. “Unified Single-Cell Analysis of Testis Gene Regulation and Pathology in Five Mouse Strains”. In: eLife 8 (Jun. 25, 2019). Ed. by D. Bourc’his, P. J. Wittkopp and S. Lukassen, p. e43966. ISSN: 2050-084X. DOI: 10.7554/eLife.43966. https://doi.org/10.7554/eLife.43966 (visited on 03/03/2021).
[19] T. Karasaki, D. A. Moore, S. Veeriah, et al. “Evolutionary Characterization of Lung Adenocarcinoma Morphology in TRACERx”. In: Nature Medicine (Apr. 12, 2023), pp. 1-13. ISSN: 1546-170X. DOI: 10.1038/s41591-023-02230-w. https://www.nature.com/articles/s41591-023-02230-w (visited on 04/14/2023).
[20] N. Khan, H. T. T. Nguyen, S. Galelli, et al. “Increasing Drought Risks Over the Past Four Centuries Amidst Projected Flood Intensification in the Kabul River Basin (Afghanistan and Pakistan)—Evidence From Tree Rings”. In: Geophysical Research Letters 49.24 (2022), p. e2022GL100703. ISSN: 1944-8007. DOI: 10.1029/2022GL100703. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL100703 (visited on 05/09/2023).
[21] M. Kornienko, D. Bespiatykh, M. Malakhova, et al. “PCR Assay for Rapid Taxonomic Differentiation of Virulent Staphylococcus Aureus and Klebsiella Pneumoniae Bacteriophages”. In: International Journal of Molecular Sciences 24.5 (5 Jan. 2023), p. 4483. ISSN: 1422-0067. DOI: 10.3390/ijms24054483. https://www.mdpi.com/1422-0067/24/5/4483 (visited on 03/02/2023).
[22] A. Lan, K. Kang, S. Tang, et al. “Fine-Scale Population Structure and Demographic History of Han Chinese Inferred from Haplotype Network of 111,000 Genomes”. In: bioRxiv (Jul. 04, 2020), p. 2020.07.03.166413. DOI: 10.1101/2020.07.03.166413. https://www.biorxiv.org/content/10.1101/2020.07.03.166413v2 (visited on 03/03/2021).
[23] Z. Lapp, R. Crawford, A. Miles-Jay, et al. “Regional Spread of blaNDM-1-containing Klebsiella Pneumoniae ST147 in Post-Acute Care Facilities”. In: Clinical Infectious Diseases (ciab457 May. 17, 2021). ISSN: 1058-4838. DOI: 10.1093/cid/ciab457. https://doi.org/10.1093/cid/ciab457 (visited on 05/21/2021).
[24] J. Ma, X. Zhu, R. Hu, et al. “A Systematic Review, Meta-Analysis and Meta-Regression of the Global Prevalence of Foodborne Vibrio Spp. Infection in Fishes: A Persistent Public Health Concern”. In: Marine Pollution Bulletin 187 (Feb. 01, 2023), p. 114521. ISSN: 0025-326X. DOI: 10.1016/j.marpolbul.2022.114521. https://www.sciencedirect.com/science/article/pii/S0025326X22012036 (visited on 01/10/2023).
[25] D. G. Maghini, M. Dvorak, A. Dahlen, et al. “Quantifying Bias Introduced by Sample Collection in Relative and Absolute Microbiome Measurements”. In: Nature Biotechnology (Apr. 27, 2023), pp. 1-11. ISSN: 1546-1696. DOI: 10.1038/s41587-023-01754-3. https://www.nature.com/articles/s41587-023-01754-3 (visited on 05/02/2023).
[26] E. Merino Tejero, D. Lashgari, R. GarcĂa-Valiente, et al. “Multiscale Modeling of Germinal Center Recapitulates the Temporal Transition From Memory B Cells to Plasma Cells Differentiation as Regulated by Antigen Affinity-Based Tfh Cell Help”. In: Frontiers in Immunology 11 (Feb. 05, 2021). ISSN: 1664-3224. DOI: 10.3389/fimmu.2020.620716. pmid: 33613551. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892951/ (visited on 03/03/2021).
[27] G. Papacharalampous, H. Tyralis, S. M. Papalexiou, et al. “Global-Scale Massive Feature Extraction from Monthly Hydroclimatic Time Series: Statistical Characterizations, Spatial Patterns and Hydrological Similarity”. In: Science of The Total Environment 767 (May. 01, 2021), p. 144612. ISSN: 0048-9697. DOI: 10.1016/j.scitotenv.2020.144612. https://www.sciencedirect.com/science/article/pii/S0048969720381432 (visited on 03/03/2021).
[28] C. Plaza, P. GarcĂa-Palacios, A. A. Berhe, et al. “Ecosystem Productivity Has a Stronger Influence than Soil Age on Surface Soil Carbon Storage across Global Biomes”. In: Communications Earth & Environment 3.1 (1 Oct. 07, 2022), pp. 1-8. ISSN: 2662-4435. DOI: 10.1038/s43247-022-00567-7. https://www.nature.com/articles/s43247-022-00567-7 (visited on 10/12/2022).
[29] C. Plaza, P. GarcĂa-Palacios, A. A. Berhe, et al. “Ecosystem Productivity Has a Stronger Influence than Soil Age on Surface Soil Carbon Storage across Global Biomes”. In: Communications Earth & Environment 3.1 (1 Oct. 07, 2022), pp. 1-8. ISSN: 2662-4435. DOI: 10.1038/s43247-022-00567-7. https://www.nature.com/articles/s43247-022-00567-7 (visited on 10/31/2022).
[30] P. Pottier, H. Lin, R. R. Y. Oh, et al. “A Comprehensive Database of Amphibian Heat Tolerance”. In: Scientific Data 9.1 (1 Oct. 04, 2022), p. 600. ISSN: 2052-4463. DOI: 10.1038/s41597-022-01704-9. https://www.nature.com/articles/s41597-022-01704-9 (visited on 10/08/2022).
[31] J. M. Quilty, A. E. Sikorska-Senoner, and D. Hah. “A Stochastic Conceptual-Data-Driven Approach for Improved Hydrological Simulations”. In: Environmental Modelling & Software (Jan. 16, 2022), p. 105326. ISSN: 1364-8152. DOI: 10.1016/j.envsoft.2022.105326. https://www.sciencedirect.com/science/article/pii/S1364815222000329 (visited on 01/19/2022).
[32] H. Rodenhizer, F. Belshe, G. Celis, et al. “Abrupt Permafrost Thaw Accelerates Carbon Dioxide and Methane Release at a Tussock Tundra Site”. In: Arctic, Antarctic, and Alpine Research 54.1 (Dec. 31, 2022), pp. 443-464. ISSN: 1523-0430. DOI: 10.1080/15230430.2022.2118639. https://doi.org/10.1080/15230430.2022.2118639 (visited on 10/04/2022).
[33] A. Rutz, M. Sorokina, J. Galgonek, et al. “Open Natural Products Research: Curation and Dissemination of Biological Occurrences of Chemical Structures through Wikidata”. In: bioRxiv (Mar. 01, 2021), p. 2021.02.28.433265. DOI: 10.1101/2021.02.28.433265. https://www.biorxiv.org/content/10.1101/2021.02.28.433265v1 (visited on 03/07/2021).
[34] M. R. Scharn, M. C. G. Brachmann, M. A. Patchett, et al. Vegetation Responses to 26 Years of Warming at Latnjajaure Field Station, Northern Sweden. https://doi.org/10.1139/AS-2020-0042. Apr. 01, 2021. https://cdnsciencepub.com/doi/abs/10.1139/AS-2020-0042 (visited on 04/05/2021).
[35] L. Seep, Z. Razaghi-Moghadam, and Z. Nikoloski. “Reaction Lumping in Metabolic Networks for Application with Thermodynamic Metabolic Flux Analysis”. In: Scientific Reports 11.1 (1 Apr. 20, 2021), p. 8544. ISSN: 2045-2322. DOI: 10.1038/s41598-021-87643-8. https://www.nature.com/articles/s41598-021-87643-8 (visited on 04/23/2021).
[36] O. Seppälä. “Spatial and Temporal Drivers of Soil Respiration in a Tundra Environment”. MA Thesis. FACULTY OF SCIENCE DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY GEOGRAPHY: UNIVERSITY OF HELSINKI, 2020.
[37] L. Shah, C. A. Arnillas, and G. B. Arhonditsis. “Characterizing Temporal Trends of Meteorological Extremes in Southern and Central Ontario, Canada”. In: Weather and Climate Extremes (Jan. 25, 2022), p. 100411. ISSN: 2212-0947. DOI: 10.1016/j.wace.2022.100411. https://www.sciencedirect.com/science/article/pii/S2212094722000056 (visited on 01/29/2022).
[38] S. A. Simon, K. Schmidt, L. Griesdorn, et al. Dancing the Nanopore Limbo – Nanopore Metagenomics from Small DNA Quantities for Bacterial Genome Reconstruction. Feb. 16, 2023. https://www.biorxiv.org/content/10.1101/2023.02.16.527874v1 (visited on 02/20/2023). preprint.
[39] C. C. Smith, S. Entwistle, C. Willis, et al. “Landscape and Selection of Vaccine Epitopes in SARS-CoV-2”. In: bioRxiv (Jun. 04, 2020). DOI: 10.1101/2020.06.04.135004. pmid: 32577654. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302209/ (visited on 03/03/2021).
[40] F. St-Onge, M. Javanray, A. Pichet Binette, et al. “Functional Connectome Fingerprinting across the Lifespan”. In: Network Neuroscience (May. 04, 2023), pp. 1-55. ISSN: 2472-1751. DOI: 10.1162/netn_a_00320. https://doi.org/10.1162/netn_a_00320 (visited on 05/09/2023).
[41] S. N. Thiede, E. S. Snitkin, W. Trick, et al. “Genomic Epidemiology Suggests Community Origins of Healthcare-Associated USA300 MRSA”. In: The Journal of Infectious Diseases (Feb. 16, 2022), p. jiac056. ISSN: 0022-1899. DOI: 10.1093/infdis/jiac056. https://doi.org/10.1093/infdis/jiac056 (visited on 02/26/2022).
[42] A. Torres-EspĂn, A. Chou, J. R. Huie, et al. “Reproducible Analysis of Disease Space via Principal Components Using the Novel R Package syndRomics”. In: eLife 10 (Jan. 14, 2021). Ed. by M. Zaidi and M. Barton, p. e61812. ISSN: 2050-084X. DOI: 10.7554/eLife.61812. https://doi.org/10.7554/eLife.61812 (visited on 03/03/2021).
[43] C. Wang, X. Zhao, H. Zhang, et al. “Comprehensive Analysis of Immune-Related Genes Associated with the Microenvironment of Patients with Unexplained Infertility”. In: Annals of Translational Medicine 11.2 (2 Jan. 2023), pp. 84-84. ISSN: 2305-5847, 2305-5839. DOI: 10.21037/atm-22-5810. https://atm.amegroups.com/article/view/108642 (visited on 02/12/2023).
[44] L. Weidenauer and M. Quadroni. “Phosphorylation in the Charged Linker Modulates Interactions and Secretion of Hsp90β”. In: Cells 10.7 (7 Jul. 2021), p. 1701. DOI: 10.3390/cells10071701. https://www.mdpi.com/2073-4409/10/7/1701 (visited on 07/08/2021).
[45] D. Wendisch, O. Dietrich, T. Mari, et al. “SARS-CoV-2 Infection Triggers Profibrotic Macrophage Responses and Lung Fibrosis”. In: Cell (Nov. 27, 2021). ISSN: 0092-8674. DOI: 10.1016/j.cell.2021.11.033. https://www.sciencedirect.com/science/article/pii/S0092867421013830 (visited on 12/11/2021).
[46] R. Woyda, A. Oladeinde, and Z. Abdo. “Chicken Production and Human Clinical Escherichia Coli Isolates Differ in Their Carriage of Antimicrobial Resistance and Virulence Factors”. In: Applied and Environmental Microbiology 0.0 (Jan. 18, 2023), pp. e01167-22. DOI: 10.1128/aem.01167-22. https://journals.asm.org/doi/abs/10.1128/aem.01167-22 (visited on 01/25/2023).
[47] R. J. Wright, M. G. I. Langille, and T. R. Walker. “Food or Just a Free Ride? A Meta-Analysis Reveals the Global Diversity of the Plastisphere”. In: The ISME Journal 15.3 (3 Mar. 2021), pp. 789-806. ISSN: 1751-7370. DOI: 10.1038/s41396-020-00814-9. https://www.nature.com/articles/s41396-020-00814-9 (visited on 03/03/2021).
[48] T. Wyenberg-Henzler, R. T. Patterson, and J. C. Mallon. “Ontogenetic Dietary Shifts in North American Hadrosaurids”. In: Cretaceous Research (Feb. 23, 2022), p. 105177. ISSN: 0195-6671. DOI: 10.1016/j.cretres.2022.105177. https://www.sciencedirect.com/science/article/pii/S0195667122000416 (visited on 02/26/2022).
[49] M. Xie, B. Cheng, S. Yu, et al. “Cuproptosis-Related MiR-21-5p/FDX1 Axis in Clear Cell Renal Cell Carcinoma and Its Potential Impact on Tumor Microenvironment”. In: Cells 12.1 (Dec. 31, 2022), p. 173. ISSN: 2073-4409. DOI: 10.3390/cells12010173. pmid: 36611966.
[50] A. Yan, J. Butcher, D. Mack, et al. “Virome Sequencing of the Human Intestinal Mucosal–Luminal Interface”. In: Frontiers in Cellular and Infection Microbiology 10 (Oct. 22, 2020). ISSN: 2235-2988. DOI: 10.3389/fcimb.2020.582187. pmid: 33194818. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642909/ (visited on 03/03/2021).
[51] P. Zannini, F. Frascaroli, J. Nascimbene, et al. “Sacred Natural Sites and Biodiversity Conservation: A Systematic Review”. In: Biodiversity and Conservation (Sep. 30, 2021). ISSN: 1572-9710. DOI: 10.1007/s10531-021-02296-3. https://doi.org/10.1007/s10531-021-02296-3 (visited on 10/04/2021).
[52] H. L. Zhang, K. J. Gontjes, J. H. Han, et al. “Characterization of Resistance to Newer Antimicrobials among Carbapenem-Resistant Klebsiella Pneumoniae in the Post–Acute-Care Setting”. In: Infection Control & Hospital Epidemiology (Jul. 28, 2022), pp. 1-4. ISSN: 0899-823X, 1559-6834. DOI: 10.1017/ice.2022.185. https://www.cambridge.org/core/journals/infection-control-and-hospital-epidemiology/article/abs/characterization-of-resistance-to-newer-antimicrobials-among-carbapenemresistant-klebsiella-pneumoniae-in-the-postacutecare-setting/33D7F100FEF2CA18FBED645D8A268EA8#supplementary-materials (visited on 08/01/2022).
[53] X. Zhang, X. Yu, Z. Yu, et al. “Network Pharmacology and Bioinformatics to Identify Molecular Mechanisms and Therapeutic Targets of Ruyi Jinhuang Powder in the Treatment of Monkeypox”. In: Medicine 102.17 (Apr. 25, 2023), p. e33576. DOI: 10.1097/MD.0000000000033576. https://journals.lww.com/md-journal/Fulltext/2023/04250/Network_pharmacology_and_bioinformatics_to.34.aspx (visited on 05/02/2023).
[54] P. Zhu, W. Liu, X. Zhang, et al. “Correlated Evolution of Social Organization and Lifespan in Mammals”. In: Nature Communications 14.1 (1 Jan. 31, 2023), p. 372. ISSN: 2041-1723. DOI: 10.1038/s41467-023-35869-7. https://www.nature.com/articles/s41467-023-35869-7 (visited on 02/04/2023).
Usage
The main function is new_scale()
and its aliases new_scale_color()
and new_scale_fill()
. When added to a plot, every geom added after
them will use a different scale.
As an example, let’s overlay some measurements over a contour map of
topography using the beloved volcano
.
library(ggplot2)
library(ggnewscale)
# Equivalent to melt(volcano)
topography <- expand.grid(x = 1:nrow(volcano),
y = 1:ncol(volcano))
topography$z <- c(volcano)
# point measurements of something at a few locations
set.seed(42)
measurements <- data.frame(x = runif(30, 1, 80),
y = runif(30, 1, 60),
thing = rnorm(30))
ggplot(mapping = aes(x, y)) +
geom_contour(data = topography, aes(z = z, color = stat(level))) +
# Color scale for topography
scale_color_viridis_c(option = "D") +
# geoms below will use another color scale
new_scale_color() +
geom_point(data = measurements, size = 3, aes(color = thing)) +
# Color scale applied to geoms added after new_scale_color()
scale_color_viridis_c(option = "A")
#> Warning: `stat(level)` was deprecated in ggplot2 3.4.0.
#> â„ą Please use `after_stat(level)` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
If you want to create new scales for other aes
, you can call
new_scale
with the name of the aes
. For example, use
new_scale("linetype")
to add multiple linetype scales.