• Stars
    star
    104
  • Rank 330,604 (Top 7 %)
  • Language
    Jupyter Notebook
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Learn Julia via epidemic modelling

Workshop at JuliaCon 2020

These are materials for the live workshop "Learn Julia via epidemic modelling" at JuliaCon 2020, which will take place on Friday 24 July, 2020 online. For access, please register for a free ticket at https://juliacon.org/2020

The versions of the notebooks in the top directory have no output. The versions in the live subdirectory are the live versions produced during the workshop, with solutions to some of the exercises.

I strongly suggest trying to solve the exercises before looking at the solutions!

Setup

  • Install the latest release (1.4.2) of Julia from here

  • Run Julia. At the Julia prompt, add the packages we will need as follows (copy and paste):

    julia> using Pkg
      
    julia> Pkg.add("IJulia")
    julia> Pkg.add("Plots")
    julia> Pkg.add("Interact")
  • Once those packages have finished installing (which will install a collection of other packages that these depend on), type

    julia> using IJulia
    julia> notebook()

    This should launch the Jupyter notebook in your browser; this is a web application that provides a computational notegbook interface.

  • Copy the notebook files (ending in .ipynb) from this repository to your computer by git clone-ing the repository or downloading the Zip file (hit the green button which says Code).

  • Navigate inside the file browser in the Jupyter notebook to the place on your computer where the files you just downloaded are. Load notebook number 1!

Installation problems

  • If you have installation problems you can also view the notebooks online at nbviewer and use e.g. the online service repl.it to write Julia code.

  • If you are on the live call, you can try to describe your problem and ask for help via the chat; hopefully other attendees will be able to assist.

MIT course 6.S083

For a more detailed, slower look at this and additional material, with much more discussion about mathematical modelling, you may be interested in MIT course 6.S083 from spring 2020. Videos are available on the JuliaLang YouTube channel.

License

Code in this repository is licensed under the MIT license, and text under the CC BY-NC 4.0 license. Copyright David P. Sanders 2020

Author

David P. Sanders, Department of Physics, Faculty of Sciences, Universidad Nacional Autónoma de México (National University of Mexico, UNAM) & Department of Mathematics, MIT.

More Repositories

1

hands_on_julia

Jupyter Notebook
141
star
2

scipy_2014_julia

Jupyter Notebook
99
star
3

Metaprogramming_JuliaCon_2021

Jupyter Notebook
79
star
4

invitation_to_julia

74
star
5

julia_towards_1.0

Materials for JuliaCon 2017 tutorial
Jupyter Notebook
54
star
6

ReversePropagation.jl

Julia
52
star
7

intermediate_julia

Jupyter Notebook
40
star
8

6.S083_fall_2019

Materials for MIT class 6.S083 / 18.S190, fall 2019
40
star
9

IntervalsJuliaCon2020

Jupyter Notebook
28
star
10

intermediate_julia_2019

Jupyter Notebook
28
star
11

scipy_2014_python

18
star
12

SatisfiabilityInterface.jl

Julia
13
star
13

ExactReals.jl

Exact real arithmetic in Julia
Julia
12
star
14

julia_tutorial_inmegen

Jupyter Notebook
11
star
15

metodos-monte-carlo

Recursos para el curso de Métodos computacionales para la física estadística.
Julia
8
star
16

ipython_extensions

Python
8
star
17

curso-python

Curso de actualización docente de Python
Python
7
star
18

SimpleUnums.jl

Jupyter Notebook
6
star
19

SimpleSATSolver.jl

Julia
5
star
20

StaticTaylorSeries.jl

Julia
5
star
21

BilliardModels.jl

Julia
5
star
22

metodos_numericos_garantizados

Curso de métodos numericos con intervalos, semestre 2018-2
Jupyter Notebook
5
star
23

JuliaCon2019_tshirt

Jupyter Notebook
5
star
24

cincinnati_julia_workshop

Jupyter Notebook
5
star
25

IntervalEigenvalues.jl

Julia
4
star
26

metodos-computacionales

Notas y programas del curso "Métodos Comutacionales para la Física Estadística", del curso del Posgrado en Ciencias Fïsicas de la UNAM
C++
4
star
27

matplotlib-examples

Python
4
star
28

sistemas_nolineales_neuronales

Jupyter Notebook
4
star
29

fisica_computacional

Jupyter Notebook
4
star
30

IntervalBase.jl

Julia
4
star
31

python_cientifico

Introducción al cómputo científico con Python. Desarrollado con apoyo del proyecto DGAPA-PAPIME PE-105911.
3
star
32

FisicaComputacional2018_1

Jupyter Notebook
3
star
33

juliacon_2017_calculating_with_sets

Jupyter Notebook
3
star
34

cincinnati_2019

Jupyter Notebook
3
star
35

nolineales

Simulación de sistemas nolineales
Python
3
star
36

hopping_times

Jupyter Notebook
3
star
37

random_matrix_notebooks

Jupyter Notebook
3
star
38

FisicaComputacional2017_2

Jupyter Notebook
3
star
39

LazyTaylorSeries.jl

Julia
2
star
40

18.337

Jupyter Notebook
2
star
41

multiple-metastable

Mis artículos
Python
2
star
42

FisicaComputacional2019_1

Jupyter Notebook
2
star
43

efficient_algorithm_Lorentz

Julia
2
star
44

intro_a_git

Intro a git del curso
2
star
45

computo_cientifico_julia

Materiales del cursillo de cómputo científico con Julia
C++
2
star
46

ValidatedNumericsTests.jl

Julia
2
star
47

dinamica_nacional

Jupyter Notebook
2
star
48

SchurFunctions.jl

Julia
2
star
49

simplejl

simple julia test
Jupyter Notebook
2
star
50

LLG

LLG
Julia
2
star
51

RepoHistoryBrowser.jl

Julia
2
star
52

julia_tutorials

2
star
53

blog

Some blog-type posts
1
star
54

dumbbell

Python
1
star
55

FisicaComputacional2019_3

Jupyter Notebook
1
star
56

Weave

1
star
57

test

1
star
58

float_rounding_tests

Julia
1
star
59

Orsay.jl

Julia
1
star
60

floating_point_exceptions

Julia
1
star
61

Cincinnati

Julia
1
star
62

ErrorfreeArithmetic

1
star
63

IPython-notebooks

Some miscellaneous IPython notebooks
Python
1
star
64

ReunionGrupo

Python
1
star
65

rigorous_pi

1
star
66

herramientas_biomate

Julia
1
star
67

interval_arithmetic

interval_arithmetic
Python
1
star
68

ModelingToolkit

1
star
69

FLOAT128.jl

100+ valid significand bits for elementary functions with |values| 0..8
Julia
1
star
70

VectorizedIntervalAlgorithms.jl

Julia
1
star