• Stars
    star
    292
  • Rank 142,152 (Top 3 %)
  • Language
    TypeScript
  • License
    MIT License
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Tiny React hooks for isolating focus within subsections of the DOM.

Focus Layers

Tiny React hooks for isolating focus within subsections of the DOM. Useful for supporting accessible dialog widgets like modals, popouts, and alerts.

No wrapper components, no emulation, no pre-defined "list of tabbable elements", and no data attributes. Implemented entirely with native APIs and events, with no additional dependencies.

Installation

This package is published under focus-layers and can be installed with any npm-compatible package manager.

Basic Usage

Call useFocusLock inside a component and provide it a ref to the DOM node to use as the container for the focus layer. When the component mounts, it will lock focus to elements within that node, and the lock will be released when the component unmounts.

import useFocusLock from "focus-layers";

function Dialog({ children }: { children: React.ReactNode }) {
  const containerRef = React.useRef<HTMLElement>();
  useFocusLock(containerRef);

  return (
    <div ref={containerRef} tabIndex={-1}>
      {children}
    </div>
  );
}

function App() {
  const [open, setOpen] = React.useState(false);

  return (
    <div>
      <button onClick={() => setOpen(true)}>Show Dialog</button>
      {open && (
        <Dialog>
          <p>
            When this dialog is open, focus is trapped inside! Tabbing will always bring focus back
            to this button.
          </p>
          <button onClick={() => setOpen(false)}>Close Dialog</button>
        </Dialog>
      )}
    </div>
  );
}

Returning Focus

After unmounting, locks will return focus to the element that was focused when the lock was mounted. This return target can also be controlled by the second parameter of useFocusLock.

function DialogWithExplicitReturn() {
  const [open, setOpen] = React.useState(false);

  const containerRef = React.useRef<HTMLDivElement>();
  const returnRef = React.useRef<HTMLButtonElement>();
  useFocusLock(containerRef, { returnRef });

  return (
    <React.Fragment>
      <button ref={returnRef}>Focus will be returned here</button>
      <button onClick={() => setOpen(true)}>Even though this button opens the Dialog</button>
      {open && (
        <Dialog>
          <button onClick={() => setOpen(false)}>Close Dialog</button>
        </Dialog>
      )}
    </React.Fragment>
  );
}

Lock Layers

Locks Layers are quite literally layers of locks, meaning they can be stacked on top of each other to create a chain of focus traps. When the top layer unmounts, the layer below it takes over as the active lock. Layers can be removed in any order, and the top layer will always remain active.

This is useful for implementing confirmations inside of modals, or flows between multiple independent modals, where one dialog will open another, and so on.

function LayeredDialogs() {
  const [firstOpen, setFirstOpen] = React.useState(false);
  const [secondOpen, setSecondOpen] = React.useState(false);

  return (
    <div>
      <button onClick={() => setFirstOpen(true)}>Open First Dialog</button>

      {firstOpen && (
        <Dialog>
          <p>This is the first dialog that has a second confirmation after it.</p>
          <button onClick={() => setSecondOpen(true)}>Confirm</button>
        </Dialog>
      )}

      {secondOpen && (
        <Dialog>
          <p>This is the second dialog, opened by the first one.</p>
          <button onClick={() => setSecondOpen(false)}>Confirm this dialog</button>
          <button
            onClick={() => {
              setSecondOpen(false);
              setFirstOpen(false);
            }}>
            Close both dialogs
          </button>
        </Dialog>
      )}
    </div>
  );
}

Note that layers only track their own return targets. If multiple layers are unmounting, it is not always guaranteed that the original return target will be focused afterward. In this case, it is best to provide an explicit return target so that focus is not left ambiguous after unmounting.

Subscribing to the Lock Stack

Layers are managed by a global LOCK_STACK object. You can subscribe to this stack to get updates whenever any focus layers are active. This is useful for marking the rest of your app with aria-hidden when modals are active, or performing any other tasks on demand:

import { LOCK_STACK } from "focus-layers";

function App() {
  const [focusLockActive, setFocusLockActive] = React.useState(false);
  React.useEffect(() => {
    LOCK_STACK.subscribe(setFocusLockActive);
    return () => LOCK_STACK.unsubscribe(setFocusLockActive);
  }, []);

  return (
    <React.Fragment>
      // This div represents your main app content
      <div aria-hidden={focusLockActive} />
      // This div would be where the dialog layers are rendered
      <div />
    </React.Fragment>
  );
}

The subscribe and unsubscribe methods are useful for listening to stack changes outside of the React's rendering pipeline, but as a convenience, the useLockSubscription hook performs the same behavior tied to a component's lifecycle.

import { useLockSubscription } from "focus-layers";

function Component() {
  useLockSubscription((enabled) =>
    console.log(`focus locking is now ${enabled ? "enabled" : "disabled"}`),
  );
}

Edge Guards

Browsers do not provide a clean way of intercepting focus events that cause focus to leave the DOM. Specifically, there is no way to directly prevent a tab/shift-tab action from moving focus out of the document and onto the browser's controls or another window.

This can cause issues with focus isolation at the edges of the DOM, where there are no more tabbable elements past the focus lock layer for focus to move to before exiting the DOM.

Semantically, this is valid behavior, but it is often nice to ensure that focus is still locked consistently. The solution is to add hidden divs with tabindex="0" to the beginning and end of the DOM (or around the focus layer) so that there is always another element for focus to move to while inside of a focus layer.

This library provides a FocusGuard component that you can render which will automatically activate when any focus layer is active, and hide itself otherwise. It renders a div that is always visually hidden, but becomes tabbable when active. These can be added at the actual edges of the DOM, or just directly surrounding any active focus layers.

import { FocusGuard } from "focus-layers";

function App() {
  return (
    <div id="app-root">
      <FocusGuard />
      // Render the rest of your app or your modal layers here.
      <FocusGuard />
    </div>
  );
}

Focus will still be trapped even without these guards in place, but the user will be able to tab out of the page and onto their browser controls if the layer is at either the very beginning or very end of the document's tab order.

Distributed Focus Groups

Layers with multiple, unconnected container nodes are not currently supported. This means layers that have content and render a React Portal as part of the layer may not allow focus to leave the layer and reach the portal.

Rendering a layer entirely within a Portal, or by any other means where there is a single containing node, is supported.

Support for groups may be added in the future to address this issue. However, it's worth noting that Portals already do not play well with tab orders and should generally not be used as anything other than an isolated focus layer. Otherwise the entire premise that focus is locked into the layer is effectively broken anyway.

External Focus Layers

The LOCK_STACK provides a way of integrating your own layers into the system. This can be useful when integrating with other libraries or components that implement their own focus management, or manually triggering focus locks that aren't tied to a component lifecycle.

Activating a layer is as simple as calling add with a uid and an EnabledCallback, which will be called when the LOCK_STACK determines that the layer should be active. The callback will be invoked immediately by the call to add, indicating that the layer is now active. The layer can then be removed at any time in the future via the remove method.

import { LOCK_STACK } from "focus-layers";

const enabled = false;
const setEnabled = (now) => (enabled = now);

LOCK_STACK.add("custom lock", setEnabled);
// Sometime later
LOCK_STACK.remove("custom lock");

Integrating with the LOCK_STACK is a promise that your lock will enable and disable itself when it is told to (via the callback). Adding your lock to the stack is also a promise that you will remove it from the stack once the lock is "unmounted" or otherwise removed from use. Without removing your lock, all layers below your lock will be unable to regain focus.

If you are inside of a component and want to tie the focus lock to its lifecycle, you can instead use the useLockLayer hook to simplify adding and removing. In return it provides a boolean indicating whether the lock is currently enabled, and will force a re-render when that state changes:

import { useLockLayer } from "focus-layers";

function Component() {
  const enabled = useLockLayer();

  React.useEffect(() => {
    toggleCustomLock(enabled);
  }, [enabled]);

  return <p>Custom lock is {enabled ? "enabled" : "disabled"}</p>;
}

Free Focus Layers

Custom locks can also be used to implement "free focus layers" without losing the context of the focus layers that are currently in place. Free focus is a situation where focus is not locked into any subsection and can move freely throughout the document. This can be useful for single-page applications that want to preserve focus state between multiple views where previous views get removed from the DOM while another view takes its place.

A free focus layer can easily be implemented as part of a Component. In the single-page application use case mentioned above, this might happen in the base View component that wraps each view.

import { useLockLayer } from "focus-layers";

function View() {
  useLockLayer();

  return <div />;
}

The layer gets added on mount, disabling all layers below it, and since there's no new lock to activate, the return value is just ignored, and nothing else needs to happen.

Scoped Roots

By default useFocusLock will attach a focus listener to the document itself, to capture all focus events that happen on the page. Sometimes this can have unintended consequences where a utility function wants to quickly focus an external element and perform an action. For example, cross-platform copy utilities often do this (see MDN clipboard example).

Free Focus layers would be good for this, but because these hooks are based around useEffect, it's likely that the current lock layer wouldn't be disabled in time for the utility to do its job. To get around this, you can scope where useFocusLock attaches listeners via the attachTo option. A good candidate for this is the node that your app is mounted to, and then have these other utilities do their work outside of that subtree.

import { useFocusLock } from "focus-layers";

function DialogWithCopyableText() {
  const containerRef = React.useRef<HTMLDivElement>();
  useFocusLock(containerRef, { attachTo: document.getElementById("app-mount") || document });

  const text = "this is the copied text";

  return (
    <div containerRef={containerRef}>
      <button onClick={() => copy(text)}>Copy some text</button>
    </div>
  );
}

Alternatives

This library was created after multiple attempts at using other focus locking libraries and wanting something with a simpler implementation that leverages the browser's APIs as much as possible, and fewer implications on DOM and Component structures. There are multiple other options out there that perform a similar job in different ways, such as:

  • react-focus-lock: Lots of options, very flexible, but uses a lot of DOM nodes and attributes.
  • react-focus-trap: Nice and simple, but uses two div containers and does not work nicely with shift+tab navigation.
  • focus-trap-react: Lots of useful features, but relies on intercepting key and mouse events and querying for tabbable elements.

More Repositories

1

discord-api-docs

Official Discord API Documentation
Markdown
5,543
star
2

lilliput

Resize images and animated GIFs in Go
C++
1,923
star
3

manifold

Fast batch message passing between nodes for Erlang/Elixir.
Elixir
1,618
star
4

sorted_set_nif

Elixir SortedSet backed by a Rust-based NIF
Elixir
1,532
star
5

discord-open-source

List of open source communities living on Discord
JavaScript
1,350
star
6

embedded-app-sdk

πŸš€ The Discord Embedded App SDK lets you build rich, multiplayer experiences as Activities inside Discord.
TypeScript
1,219
star
7

focus-rings

A centralized system for displaying and stylizing focus indicators anywhere on a webpage.
TypeScript
1,120
star
8

fastglobal

Fast no copy globals for Elixir & Erlang.
Elixir
1,097
star
9

discord-rpc

C++
983
star
10

airhornbot

The only bot for Discord you'll ever need.
TypeScript
851
star
11

semaphore

Fast semaphore using ETS.
Elixir
718
star
12

react-dnd-accessible-backend

An add-on backend for `react-dnd` that provides support for keyboards and screenreaders by default.
TypeScript
576
star
13

ex_hash_ring

A fast consistent hash ring implementation in Elixir.
Elixir
475
star
14

discord-example-app

Basic Discord app with examples
JavaScript
434
star
15

OverlappingPanels

Overlapping Panels is a gestures-driven navigation UI library for Android
Kotlin
421
star
16

SimpleAST

Extensible Android library for both parsing text into Abstract Syntax Trees and rendering those trees as rich text.
Kotlin
360
star
17

discord-interactions-js

JS/Node helpers for Discord Interactions
TypeScript
345
star
18

access

Access, a centralized portal for employees to transparently discover, request, and manage their access for all internal systems needed to do their jobs
Python
311
star
19

instruments

Simple and Fast metrics for Elixir
Elixir
295
star
20

discord-api-spec

OpenAPI specification for Discord APIs
237
star
21

discord-oauth2-example

Discord OAuth2 Example
Python
223
star
22

loqui

RPC Transport Layer - with minimal bullshit.
Rust
220
star
23

erlpack

High Performance Erlang Term Format Packer
Cython
211
star
24

cloudflare-sample-app

Example discord bot using Cloudflare Workers
JavaScript
197
star
25

use-memo-value

Reuse the previous version of a value unless it has changed
TypeScript
170
star
26

zen_monitor

Efficient Process.monitor replacement
Elixir
167
star
27

deque

Fast bounded deque using two rotating lists.
Elixir
141
star
28

avatar-remix-bot

TypeScript
127
star
29

linked-roles-sample

JavaScript
119
star
30

punt

Punt is a tiny and lightweight daemon which helps ship logs to Elasticsearch.
Go
113
star
31

sample-game-integration

An example using Discord's API and local RPC socket to add Voice and Text chat to an instance or match based multiplayer game.
JavaScript
107
star
32

endanger

Build Dangerfiles with ease.
TypeScript
96
star
33

discord-interactions-python

Useful tools for building interactions in Python
Python
93
star
34

react-base-hooks

Basic utility React hooks
TypeScript
77
star
35

dynamic-pool

a lock-free, thread-safe, dynamically-sized object pool.
Rust
76
star
36

itsdangerous-rs

A rust port of itsdangerous!
Rust
73
star
37

gen_registry

Simple and efficient local Process Registry
Elixir
71
star
38

confetti-cannon

Launch Confetti
TypeScript
47
star
39

discord-react-forms

Forms... in React
JavaScript
44
star
40

discord-interactions-php

PHP utilities for building Discord Interaction webhooks
PHP
40
star
41

babel-plugin-define-patterns

Create constants that replace various expressions at build-time
JavaScript
39
star
42

memory_size

Elixir
30
star
43

eslint-traverse

Create a sub-traversal of an AST node in your ESLint plugin
JavaScript
30
star
44

rapidxml

Mirror of rapidxml from http://rapidxml.sourceforge.net/
C++
29
star
45

gamesdk-and-dispatch

Public issue tracker for the Discord Game SDK and Dispatch
22
star
46

dispenser

Elixir library to buffer and send events to subscribers.
Elixir
17
star
47

eslint-plugin-discord

Custom ESLint rules for Discord
JavaScript
16
star
48

chromium-build

Python
15
star
49

hash_ring

hash_ring
C
14
star
50

limited_queue

Simple Elixir queue, with a constant-time `size/1` and a maximum capacity
Elixir
13
star
51

perceptual

A smarter volume slider scale
TypeScript
13
star
52

discord_vigilante

12
star
53

heroku-sample-app

Example discord bot using Heroku
JavaScript
11
star
54

postcss-theme-shorthand

Converts `light-` and `dark-` prefixed CSS properties into corresponding light/dark theme globals
JavaScript
11
star
55

babel-plugin-strip-object-freeze

Replace all instances of Object.freeze(value) with value
JavaScript
10
star
56

libyuv

our fork of libyuv for webrtc
C++
10
star
57

lilliput-rs

Lilliput, in Rust!
Rust
9
star
58

lilliput-bench

Benchmarker for lilliput
Python
8
star
59

sqlite3

Mirror of sqlite amalgamation from https://www.sqlite.org/
C
7
star
60

openh264

C++
6
star
61

slate-react-package-fork

TypeScript
6
star
62

rlottiebinding-ios

rlottie ios submodule
Starlark
5
star
63

jemalloc_info

A small library for exporting jemalloc allocation data in Elixir
Elixir
5
star
64

libnice

Fork of https://nice.freedesktop.org/wiki/
C
5
star
65

slate-package-fork

JavaScript
5
star
66

libvpx

C
4
star
67

libsrtp

Fork of libsrtp
C
4
star
68

RLottieAndroid

C++
4
star
69

opentelemetry-rust-datadog

Rust
4
star
70

lilliput-dep-source

Convenient source repo for Lilliput's dependencies
3
star
71

slate-hotkeys-package-fork

3
star
72

rules_ios

Bazel rules for building iOS applications and frameworks
Starlark
2
star
73

cocoapods-bazel

A Cocoapods plugin for automatically generating Bazel BUILD files
Ruby
2
star
74

eslint-plugin-react-discord

Fork of eslint-plugin-react
JavaScript
1
star