• Stars
    star
    103
  • Rank 333,046 (Top 7 %)
  • Language
    Perl
  • License
    MIT License
  • Created over 8 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Learning the Sequence Alignment/Map format

Table of Contents

Tue 13 Sep 2022 05:07:41 AM UTC

Learning the BAM format

Introduction

Build README

SAMtools provides various (sub)tools for manipulating alignments in the SAM/BAM format. The SAM (Sequence Alignment/Map) format (BAM is just the binary form of SAM) is currently the de facto standard for storing large nucleotide sequence alignments. If you are working with high-throughput sequencing data, at some point you will probably have to deal with SAM/BAM files, so familiarise yourself with them! For the latest information on SAMtools, please refer to the release notes.

The examples in this README use the ERR188273_chrX.bam BAM file (stored in the eg folder) generated as per https://github.com/davetang/rnaseq using the HISAT2 + StringTie2 RNA-seq pipeline. This README is generated using the create_readme.sh script; if you want to generate this file yourself, please use this Docker image and the Makefile in this directory. For example:

# clone this repo
git clone https://github.com/davetang/learning_bam_file.git
cd learning_bam_file

docker pull davetang/r_build:4.1.2
docker run --rm -it -v $(pwd):/work davetang/r_build:4.1.2 /bin/bash

# inside the Docker container
make

Installing SAMtools

For installing SAMtools, I recommend using Conda and the Bioconda samtools package. I also recommend using Miniconda instead of Anaconda because Anaconda comes with a lot of tools/packages that you will probably not use. I wrote a short introduction to Conda if you want to find learn more.

Once you have installed Miniconda, you can install SAMtools as follows:

conda install -c bioconda samtools

Otherwise you can download the source and compile it yourself; change dir to the location you want samtools to be installed. samtools will be installed in ${dir}/bin, so make sure this is in your $PATH.

#!/usr/bin/env bash

set -euo pipefail

ver=1.15
tool=samtools
url=https://github.com/samtools/${tool}/releases/download/${ver}/${tool}-${ver}.tar.bz2
dir=${HOME}/local

wget ${url}
tar xjf ${tool}-${ver}.tar.bz2
cd ${tool}-${ver}
./configure --prefix=${dir}
make && make install
cd ..

rm -rf ${tool}-${ver} ${tool}-${ver}.tar.bz2

>&2 echo Done
exit 0

Basic usage

If you run samtools on the terminal without any parameters or with --help, all the available utilities are listed:

samtools --help
## 
## Program: samtools (Tools for alignments in the SAM format)
## Version: 1.16 (using htslib 1.16)
## 
## Usage:   samtools <command> [options]
## 
## Commands:
##   -- Indexing
##      dict           create a sequence dictionary file
##      faidx          index/extract FASTA
##      fqidx          index/extract FASTQ
##      index          index alignment
## 
##   -- Editing
##      calmd          recalculate MD/NM tags and '=' bases
##      fixmate        fix mate information
##      reheader       replace BAM header
##      targetcut      cut fosmid regions (for fosmid pool only)
##      addreplacerg   adds or replaces RG tags
##      markdup        mark duplicates
##      ampliconclip   clip oligos from the end of reads
## 
##   -- File operations
##      collate        shuffle and group alignments by name
##      cat            concatenate BAMs
##      consensus      produce a consensus Pileup/FASTA/FASTQ
##      merge          merge sorted alignments
##      mpileup        multi-way pileup
##      sort           sort alignment file
##      split          splits a file by read group
##      quickcheck     quickly check if SAM/BAM/CRAM file appears intact
##      fastq          converts a BAM to a FASTQ
##      fasta          converts a BAM to a FASTA
##      import         Converts FASTA or FASTQ files to SAM/BAM/CRAM
##      reference      Generates a reference from aligned data
## 
##   -- Statistics
##      bedcov         read depth per BED region
##      coverage       alignment depth and percent coverage
##      depth          compute the depth
##      flagstat       simple stats
##      idxstats       BAM index stats
##      phase          phase heterozygotes
##      stats          generate stats (former bamcheck)
##      ampliconstats  generate amplicon specific stats
## 
##   -- Viewing
##      flags          explain BAM flags
##      head           header viewer
##      tview          text alignment viewer
##      view           SAM<->BAM<->CRAM conversion
##      depad          convert padded BAM to unpadded BAM
##      samples        list the samples in a set of SAM/BAM/CRAM files
## 
##   -- Misc
##      help [cmd]     display this help message or help for [cmd]
##      version        detailed version information

Viewing

Use bioSyntax to prettify your output.

samtools view aln.bam | sam-less

bioSyntax

Converting a SAM file to a BAM file

A BAM file is just a SAM file but stored in binary format; you should always convert your SAM files into BAM format since they are smaller in size and are faster to manipulate.

I don’t have a SAM file in the example folder, so let’s create one and check out the first ten lines. Note: remember to use -h to ensure the SAM file contains the sequence header information. Generally, I recommend storing only sorted BAM files as they use even less disk space and are faster to process.

samtools view -h eg/ERR188273_chrX.bam > eg/ERR188273_chrX.sam

Notice that the SAM file is much larger than the BAM file.

Size of SAM file.

ls -lh eg/ERR188273_chrX.sam
## -rw-r--r-- 1 root root 321M Sep 13 05:03 eg/ERR188273_chrX.sam

Size of BAM file.

ls -lh eg/ERR188273_chrX.bam
## -rw-r--r-- 1 root root 67M Sep 13 05:02 eg/ERR188273_chrX.bam

We can use head to view a SAM file.

head eg/ERR188273_chrX.sam
## @HD  VN:1.0  SO:coordinate
## @SQ  SN:chrX LN:156040895
## @PG  ID:hisat2   PN:hisat2   VN:2.2.0    CL:"/Users/dtang/github/rnaseq/hisat2/../src/hisat2-2.2.0/hisat2-align-s --wrapper basic-0 --dta -p 4 -x ../raw/chrX_data/indexes/chrX_tran -1 /tmp/4195.inpipe1 -2 /tmp/4195.inpipe2"
## @PG  ID:samtools PN:samtools PP:hisat2   VN:1.16 CL:samtools view -h eg/ERR188273_chrX.bam
## ERR188273.4711308    73  chrX    21649   0   5S70M   =   21649   0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.4711308    133 chrX    21649   0   *   =   21649   0   CTACAGGTGCCCGCCACCATGCCCAGCTAATTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACTGTGTTGGCC CB@FDFFFHHGFHIJJJJIIIIIIIGGGIJGIIJJJJJJFFHIIIIGECHEHHGGHHFF?AACCDDDDDDDDBCD YT:Z:UP
## ERR188273.4711308    329 chrX    233717  0   5S70M   =   233717  0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.14904746   99  chrX    251271  60  75M =   251317  121 GAAAAATGGGCCCAGGGGACCGGCGCTCAGCATACAGAGGACCCGCGCCGGCACCTGCCTCTGAGTTCCCTTAGT @@<DDDDDFB>HHEGIIGAGIIIBGIIG@FECH<F@GIIFAE=?BCBBCBBB5@<?CBBCCCCAACDCCCCCCCC AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YS:i:-2 YT:Z:CP NH:i:1
## ERR188273.14904746   147 chrX    251317  60  75M =   251271  -121    GCCGGCCCCTGCCTCTGAGTTCCCTTAGTACTTATTGATCATTATCGGGGAGAGGGGGATGTGGCAGGACAATAG #######B?DAHC@EGIIGGEHHGC@GFBFCEGFCIGG@EG@@H<JIEHEF@IGEHGHIIHFGHDDFDDDDD?<B AS:i:-2 ZS:i:-7 XN:i:0  XM:i:1  XO:i:0  XG:i:0  NM:i:1  MD:Z:6A68   YS:i:0  YT:Z:CP NH:i:1
## ERR188273.5849805    163 chrX    265951  1   75M =   266022  146 CGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCCGCCACCACGCCCGGCTAA @CCFDFFFHHHHHJJJJJJFJJJJJIJIJJJJJJJJGHIJJJJJEHIJIJGIIJJJHHFFDDEDDDDDDDDDDDD AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YS:i:0  YT:Z:CP NH:i:2

The lines starting with an “@” symbol contains the header information. The @SQ tag is the reference sequence dictionary; SN refers to the reference sequence name and LN refers to the reference sequence length. If you don’t see lines starting with the “@” symbol, the header information is probably missing. You can generate this information again by running the command below, where ref.fa is the reference FASTA file used to map the reads.

samtools view -bT sequence/ref.fa aln.sam > aln.bam

If the header information is available, we can convert a SAM file into BAM by using samtools view -b. In newer versions of SAMtools, the input format is auto-detected, so we no longer need the -S parameter.

samtools view -b eg/ERR188273_chrX.sam > eg/my.bam

Converting a BAM file to a CRAM file

The CRAM format is even more compact. Use samtools view with the -T and -C arguments to convert a BAM file into CRAM.

samtools view -T genome/chrX.fa -C -o eg/ERR188273_chrX.cram eg/ERR188273_chrX.bam

ls -lh eg/ERR188273_chrX.[sbcr]*am
## -rw-r--r-- 1 root root  67M Sep 13 05:02 eg/ERR188273_chrX.bam
## -rw-r--r-- 1 root root  40M Sep 13 05:04 eg/ERR188273_chrX.cram
## -rw-r--r-- 1 root root 321M Sep 13 05:03 eg/ERR188273_chrX.sam

You can use samtools view to view a CRAM file just as you would for a BAM file.

samtools view eg/ERR188273_chrX.cram | head
## ERR188273.4711308    73  chrX    21649   0   5S70M   =   21649   0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  YT:Z:UP NH:i:2  MD:Z:70 NM:i:0
## ERR188273.4711308    133 chrX    21649   0   *   =   21649   0   CTACAGGTGCCCGCCACCATGCCCAGCTAATTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACTGTGTTGGCC CB@FDFFFHHGFHIJJJJIIIIIIIGGGIJGIIJJJJJJFFHIIIIGECHEHHGGHHFF?AACCDDDDDDDDBCD YT:Z:UP
## ERR188273.4711308    329 chrX    233717  0   5S70M   =   233717  0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  YT:Z:UP NH:i:2  MD:Z:70 NM:i:0
## ERR188273.14904746   99  chrX    251271  60  75M =   251317  121 GAAAAATGGGCCCAGGGGACCGGCGCTCAGCATACAGAGGACCCGCGCCGGCACCTGCCTCTGAGTTCCCTTAGT @@<DDDDDFB>HHEGIIGAGIIIBGIIG@FECH<F@GIIFAE=?BCBBCBBB5@<?CBBCCCCAACDCCCCCCCC AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  YS:i:-2 YT:Z:CP NH:i:1  MD:Z:75 NM:i:0
## ERR188273.14904746   147 chrX    251317  60  75M =   251271  -121    GCCGGCCCCTGCCTCTGAGTTCCCTTAGTACTTATTGATCATTATCGGGGAGAGGGGGATGTGGCAGGACAATAG #######B?DAHC@EGIIGGEHHGC@GFBFCEGFCIGG@EG@@H<JIEHEF@IGEHGHIIHFGHDDFDDDDD?<B AS:i:-2 ZS:i:-7 XN:i:0  XM:i:1  XO:i:0  XG:i:0  YS:i:0  YT:Z:CP NH:i:1  MD:Z:6A68   NM:i:1
## ERR188273.5849805    163 chrX    265951  1   75M =   266022  146 CGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCCGCCACCACGCCCGGCTAA @CCFDFFFHHHHHJJJJJJFJJJJJIJIJJJJJJJJGHIJJJJJEHIJIJGIIJJJHHFFDDEDDDDDDDDDDDD AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  YS:i:0  YT:Z:CP NH:i:2  MD:Z:75 NM:i:0
## ERR188273.1232356    369 chrX    265984  1   75M =   118343251   0   GAGTAGCTGGGACTACAGGCGCCCGCCACCACGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCAC @@CA@B>DC>>+@::8-755-BBBFDDEHHBGGEGHEEIJIIGIJJIGEIIIJJJIIJJIGGHHHGGFFFFF@@C AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  YT:Z:UP NH:i:10 MD:Z:75 NM:i:0
## ERR188273.5927795    385 chrX    265991  1   75M =   114048277   0   TGGGACTACAGGCGCCCGCCACCACGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTA =?BB??BD?FBHHBEAE@CDGG@HH=FA@GEGE;FGACCHBE6?A=ACE9)7@DCE>>5'3=338:;:>2<AA?: AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  YT:Z:UP NH:i:10 MD:Z:75 NM:i:0
## ERR188273.5849805    83  chrX    266022  1   75M =   265951  -146    CTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTGTCGATCTCCTGACCTCGTG DDDDDDDEEEEEDBFEDGHHHHHHJHIJJIGIGHFBJJIHGJJIIJJJJJJJJIGIJJJJJJHHHHHDFFFFCCB AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  YS:i:0  YT:Z:CP NH:i:2  MD:Z:75 NM:i:0
## ERR188273.13655123   113 chrX    266022  1   75M =   118343234   0   CTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTGTCGATCTCCTGACCTCGTG AACBBBACCCC>;3?BCFFEEHHHEEGIGGHAGFBBHFBHHEHCG@<@ABG??@@?BB9GBGAFFD<<DDAD@@@ AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  YT:Z:UP NH:i:2  MD:Z:75 NM:i:0

I have an old blog post on the CRAM format.

Sorting a SAM/BAM file

Many downstream tools require sorted BAM files and since they are slightly more compact than unsorted BAM files, you should always sorted BAM files. In SAMtools version 1.3 or newer, you can directly generate a sorted BAM file from a SAM file.

samtools sort eg/ERR188273_chrX.sam -o eg/sorted.bam
ls -l eg/ERR188273_chrX.bam
ls -l eg/sorted.bam
## -rw-r--r-- 1 root root 69983526 Sep 13 05:02 eg/ERR188273_chrX.bam
## -rw-r--r-- 1 root root 69983598 Sep 13 05:04 eg/sorted.bam

You should use use additional threads (if they are available) to speed up sorting; to use four threads, use -@ 4.

Time taken using one thread (default).

time samtools sort eg/ERR188273_chrX.sam -o eg/sorted.bam
## 
## real 0m10.557s
## user 0m10.217s
## sys  0m0.240s

Time taken using four threads.

time samtools sort -@ 4 eg/ERR188273_chrX.sam -o eg/sorted.bam
## [bam_sort_core] merging from 0 files and 4 in-memory blocks...
## 
## real 0m5.292s
## user 0m9.641s
## sys  0m0.325s

Many of the SAMtools subtools can use additional threads, so make use of them if you have the resources!

Creating a BAM index file

Various tools require BAM index files, such as IGV, which is a tool that can be used for visualising BAM files.

samtools index eg/ERR188273_chrX.bam

Adding read groups

Some tools like GATK and Picard require read groups (RG). You can add or replace read groups using samtools addreplacerg.

samtools addreplacerg -r "@RG\tID:ERR188273\tSM:ERR188273\tPL:illumina" -o eg/ERR188273_chrX_rg.bam eg/ERR188273_chrX.bam
samtools head eg/ERR188273_chrX_rg.bam
## @HD  VN:1.0  SO:coordinate
## @SQ  SN:chrX LN:156040895
## @PG  ID:hisat2   PN:hisat2   VN:2.2.0    CL:"/Users/dtang/github/rnaseq/hisat2/../src/hisat2-2.2.0/hisat2-align-s --wrapper basic-0 --dta -p 4 -x ../raw/chrX_data/indexes/chrX_tran -1 /tmp/4195.inpipe1 -2 /tmp/4195.inpipe2"
## @PG  ID:samtools PN:samtools PP:hisat2   VN:1.16 CL:samtools addreplacerg -r @RG\tID:ERR188273\tSM:ERR188273\tPL:illumina -o eg/ERR188273_chrX_rg.bam eg/ERR188273_chrX.bam
## @RG  ID:ERR188273    SM:ERR188273    PL:illumina

If you want to replace existing read groups, just use the same command.

samtools addreplacerg -r "@RG\tID:ERR188273_2\tSM:ERR188273_2\tPL:illumina_2" -o eg/ERR188273_chrX_rg2.bam eg/ERR188273_chrX_rg.bam
samtools head eg/ERR188273_chrX_rg2.bam
## @HD  VN:1.0  SO:coordinate
## @SQ  SN:chrX LN:156040895
## @PG  ID:hisat2   PN:hisat2   VN:2.2.0    CL:"/Users/dtang/github/rnaseq/hisat2/../src/hisat2-2.2.0/hisat2-align-s --wrapper basic-0 --dta -p 4 -x ../raw/chrX_data/indexes/chrX_tran -1 /tmp/4195.inpipe1 -2 /tmp/4195.inpipe2"
## @PG  ID:samtools PN:samtools PP:hisat2   VN:1.16 CL:samtools addreplacerg -r @RG\tID:ERR188273\tSM:ERR188273\tPL:illumina -o eg/ERR188273_chrX_rg.bam eg/ERR188273_chrX.bam
## @PG  ID:samtools.1   PN:samtools PP:samtools VN:1.16 CL:samtools addreplacerg -r @RG\tID:ERR188273_2\tSM:ERR188273_2\tPL:illumina_2 -o eg/ERR188273_chrX_rg2.bam eg/ERR188273_chrX_rg.bam
## @RG  ID:ERR188273_2  SM:ERR188273_2  PL:illumina_2

Popular alignment tools such as BWA MEM and STAR can add read groups; use the -R and --outSAMattrRGline parameters for the respective tool.

bwa mem \
  -M \
  -t ${thread} \
  -R "@RG\tID:${sample_name}\tSM:${sample}\tPL:${platform}" \
  ${fasta} \
  ${fastq1} \
  ${fastq2} |
  samtools sort -@ ${thread} -O BAM |\
  tee ${sample_name}.bam |\
  samtools index - ${sample_name}.bam.bai

STAR \
  --runMode alignReads \
  --genomeDir ${star_index} \
  --readFilesIn ${fastq1} ${fastq2} \
  --readFilesCommand "gunzip -c" \
  --outFileNamePrefix ${prefix}. \
  --outSAMtype BAM Unsorted \
  --twopassMode Basic \
  --outSAMattrRGline ID:${id} PL:Illumina PU:${pu} LB:${lb} PI:0 SM:${sm} \
  --outSAMattributes NH HI AS nM NM ch \
  --runThreadN ${num_threads}

Interpreting the BAM flags

The second column in a SAM/BAM file is the flag column; use the flags subcommand to understand specific flags. They may seem confusing at first but the encoding allows details about a read to be stored by just using a few digits. The trick is to convert the numerical digit into binary, and then use the table to interpret the binary numbers, where 1 = true and 0 = false. I wrote a blog post on BAM flags at http://davetang.org/muse/2014/03/06/understanding-bam-flags/.

samtools flags
## About: Convert between textual and numeric flag representation
## Usage: samtools flags FLAGS...
## 
## Each FLAGS argument is either an INT (in decimal/hexadecimal/octal) representing
## a combination of the following numeric flag values, or a comma-separated string
## NAME,...,NAME representing a combination of the following flag names:
## 
##    0x1     1  PAIRED         paired-end / multiple-segment sequencing technology
##    0x2     2  PROPER_PAIR    each segment properly aligned according to aligner
##    0x4     4  UNMAP          segment unmapped
##    0x8     8  MUNMAP         next segment in the template unmapped
##   0x10    16  REVERSE        SEQ is reverse complemented
##   0x20    32  MREVERSE       SEQ of next segment in template is rev.complemented
##   0x40    64  READ1          the first segment in the template
##   0x80   128  READ2          the last segment in the template
##  0x100   256  SECONDARY      secondary alignment
##  0x200   512  QCFAIL         not passing quality controls or other filters
##  0x400  1024  DUP            PCR or optical duplicate
##  0x800  2048  SUPPLEMENTARY  supplementary alignment

Find out about a 73 flag.

samtools flags 73
## 0x49 73  PAIRED,MUNMAP,READ1

Proper pair

Reads that are properly paired are mapped within an expected distance with each other and with one pair in the reverse complement orientation. The script generate_random_seq.pl can generate reads that originate from different references and are thus discordant and not properly paired (as well as properly paired reads). In the example below, 10% of reads are not properly paired (set with -d 0.1).

script/generate_random_seq.pl 30 10000 1984 > test_ref.fa
script/random_paired_end.pl -f test_ref.fa -l 100 -n 10000 -m 300 -d 0.1
bwa index test_ref.fa 2> /dev/null
bwa mem test_ref.fa l100_n10000_d300_1984_1.fq.gz l100_n10000_d300_1984_2.fq.gz > aln.sam 2> /dev/null

samtools flagstat will indicate that some reads (about 10%) mapped to different chromosomes.

samtools flagstat aln.sam
## 20000 + 0 in total (QC-passed reads + QC-failed reads)
## 20000 + 0 primary
## 0 + 0 secondary
## 0 + 0 supplementary
## 0 + 0 duplicates
## 0 + 0 primary duplicates
## 20000 + 0 mapped (100.00% : N/A)
## 20000 + 0 primary mapped (100.00% : N/A)
## 20000 + 0 paired in sequencing
## 10000 + 0 read1
## 10000 + 0 read2
## 18012 + 0 properly paired (90.06% : N/A)
## 20000 + 0 with itself and mate mapped
## 0 + 0 singletons (0.00% : N/A)
## 1988 + 0 with mate mapped to a different chr
## 1988 + 0 with mate mapped to a different chr (mapQ>=5)

Flag of a proper pair.

samtools flag $(samtools view -f 2 aln.sam | head -1 | cut -f2)
## 0x63 99  PAIRED,PROPER_PAIR,MREVERSE,READ1

Flag of a pair (that is not a proper pair).

samtools flag $(samtools view -F 2 aln.sam | head -1 | cut -f2)
## 0x61 97  PAIRED,MREVERSE,READ1

Filtering unmapped reads

Use -F 4 to filter out unmapped reads.

samtools view -F 4 -b eg/ERR188273_chrX.bam > eg/ERR188273_chrX.mapped.bam

Use -f 4 to keep only unmapped reads.

samtools view -f 4 -b eg/ERR188273_chrX.bam > eg/ERR188273_chrX.unmapped.bam

We can use the flags subcommand to confirm that a value of four represents an unmapped read.

samtools flags 4
## 0x4  4   UNMAP

Extracting entries mapping to a specific loci

Use samtools view and the ref:start-end syntax to extract reads mapping within a specific genomic loci; this requires a BAM index file.

samtools view eg/ERR188273_chrX.bam chrX:20000-30000
## ERR188273.4711308    73  chrX    21649   0   5S70M   =   21649   0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.4711308    133 chrX    21649   0   *   =   21649   0   CTACAGGTGCCCGCCACCATGCCCAGCTAATTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACTGTGTTGGCC CB@FDFFFHHGFHIJJJJIIIIIIIGGGIJGIIJJJJJJFFHIIIIGECHEHHGGHHFF?AACCDDDDDDDDBCD YT:Z:UP

Note that this takes into account the mapping of the entire read and not just the starting position. For example, if you specified chrX:20000-30000, a 75 bp long read that starts its mapping from position 19999 will also be returned. In addition, you can save the output as another BAM file if you want.

samtools view -b eg/ERR188273_chrX.bam chrX:20000-30000 > eg/ERR188273_chrX_20000_30000.bam

If you want reads mapped to a single reference (e.g. chromosome), just specify the ref and leave out the start and end values.

samtools view eg/ERR188273_chrX.bam chrX | head
## ERR188273.4711308    73  chrX    21649   0   5S70M   =   21649   0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.4711308    133 chrX    21649   0   *   =   21649   0   CTACAGGTGCCCGCCACCATGCCCAGCTAATTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACTGTGTTGGCC CB@FDFFFHHGFHIJJJJIIIIIIIGGGIJGIIJJJJJJFFHIIIIGECHEHHGGHHFF?AACCDDDDDDDDBCD YT:Z:UP
## ERR188273.4711308    329 chrX    233717  0   5S70M   =   233717  0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.14904746   99  chrX    251271  60  75M =   251317  121 GAAAAATGGGCCCAGGGGACCGGCGCTCAGCATACAGAGGACCCGCGCCGGCACCTGCCTCTGAGTTCCCTTAGT @@<DDDDDFB>HHEGIIGAGIIIBGIIG@FECH<F@GIIFAE=?BCBBCBBB5@<?CBBCCCCAACDCCCCCCCC AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YS:i:-2 YT:Z:CP NH:i:1
## ERR188273.14904746   147 chrX    251317  60  75M =   251271  -121    GCCGGCCCCTGCCTCTGAGTTCCCTTAGTACTTATTGATCATTATCGGGGAGAGGGGGATGTGGCAGGACAATAG #######B?DAHC@EGIIGGEHHGC@GFBFCEGFCIGG@EG@@H<JIEHEF@IGEHGHIIHFGHDDFDDDDD?<B AS:i:-2 ZS:i:-7 XN:i:0  XM:i:1  XO:i:0  XG:i:0  NM:i:1  MD:Z:6A68   YS:i:0  YT:Z:CP NH:i:1
## ERR188273.5849805    163 chrX    265951  1   75M =   266022  146 CGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCCGCCACCACGCCCGGCTAA @CCFDFFFHHHHHJJJJJJFJJJJJIJIJJJJJJJJGHIJJJJJEHIJIJGIIJJJHHFFDDEDDDDDDDDDDDD AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YS:i:0  YT:Z:CP NH:i:2
## ERR188273.1232356    369 chrX    265984  1   75M =   118343251   0   GAGTAGCTGGGACTACAGGCGCCCGCCACCACGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCAC @@CA@B>DC>>+@::8-755-BBBFDDEHHBGGEGHEEIJIIGIJJIGEIIIJJJIIJJIGGHHHGGFFFFF@@C AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YT:Z:UP NH:i:10
## ERR188273.5927795    385 chrX    265991  1   75M =   114048277   0   TGGGACTACAGGCGCCCGCCACCACGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTA =?BB??BD?FBHHBEAE@CDGG@HH=FA@GEGE;FGACCHBE6?A=ACE9)7@DCE>>5'3=338:;:>2<AA?: AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YT:Z:UP NH:i:10
## ERR188273.5849805    83  chrX    266022  1   75M =   265951  -146    CTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTGTCGATCTCCTGACCTCGTG DDDDDDDEEEEEDBFEDGHHHHHHJHIJJIGIGHFBJJIHGJJIIJJJJJJJJIGIJJJJJJHHHHHDFFFFCCB AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YS:i:0  YT:Z:CP NH:i:2
## ERR188273.13655123   113 chrX    266022  1   75M =   118343234   0   CTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTGTCGATCTCCTGACCTCGTG AACBBBACCCC>;3?BCFFEEHHHEEGIGGHAGFBBHFBHHEHCG@<@ABG??@@?BB9GBGAFFD<<DDAD@@@ AS:i:0  ZS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YT:Z:UP NH:i:2

You can also use a BED file, with several entries, to extract reads of interest.

cat eg/my.bed 

samtools view -L eg/my.bed eg/ERR188273_chrX.bam
## chrX 20000   30000
## chrX 233000  260000
## ERR188273.4711308    73  chrX    21649   0   5S70M   =   21649   0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.4711308    133 chrX    21649   0   *   =   21649   0   CTACAGGTGCCCGCCACCATGCCCAGCTAATTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACTGTGTTGGCC CB@FDFFFHHGFHIJJJJIIIIIIIGGGIJGIIJJJJJJFFHIIIIGECHEHHGGHHFF?AACCDDDDDDDDBCD YT:Z:UP
## ERR188273.4711308    329 chrX    233717  0   5S70M   =   233717  0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.14904746   99  chrX    251271  60  75M =   251317  121 GAAAAATGGGCCCAGGGGACCGGCGCTCAGCATACAGAGGACCCGCGCCGGCACCTGCCTCTGAGTTCCCTTAGT @@<DDDDDFB>HHEGIIGAGIIIBGIIG@FECH<F@GIIFAE=?BCBBCBBB5@<?CBBCCCCAACDCCCCCCCC AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YS:i:-2 YT:Z:CP NH:i:1
## ERR188273.14904746   147 chrX    251317  60  75M =   251271  -121    GCCGGCCCCTGCCTCTGAGTTCCCTTAGTACTTATTGATCATTATCGGGGAGAGGGGGATGTGGCAGGACAATAG #######B?DAHC@EGIIGGEHHGC@GFBFCEGFCIGG@EG@@H<JIEHEF@IGEHGHIIHFGHDDFDDDDD?<B AS:i:-2 ZS:i:-7 XN:i:0  XM:i:1  XO:i:0  XG:i:0  NM:i:1  MD:Z:6A68   YS:i:0  YT:Z:CP NH:i:1

Extracting only the first read from paired end BAM files

Sometimes you only want the first pair of a mate. 0x0040 is hexadecimal for 64 (i.e. 16 * 4), which is binary for 1000000, corresponding to the read in the first read pair.

samtools view -b -f 0x0040 eg/ERR188273_chrX.bam > eg/first.bam

Once again, you can use flags to verify this (it also accepts hexadecimal input).

samtools flags 0x0040
## 0x40 64  READ1

Stats

For simple statistics use samtools flagstat.

samtools flagstat eg/ERR188273_chrX.bam
## 1176360 + 0 in total (QC-passed reads + QC-failed reads)
## 1160084 + 0 primary
## 16276 + 0 secondary
## 0 + 0 supplementary
## 0 + 0 duplicates
## 0 + 0 primary duplicates
## 1126961 + 0 mapped (95.80% : N/A)
## 1110685 + 0 primary mapped (95.74% : N/A)
## 1160084 + 0 paired in sequencing
## 580042 + 0 read1
## 580042 + 0 read2
## 1060858 + 0 properly paired (91.45% : N/A)
## 1065618 + 0 with itself and mate mapped
## 45067 + 0 singletons (3.88% : N/A)
## 0 + 0 with mate mapped to a different chr
## 0 + 0 with mate mapped to a different chr (mapQ>=5)

For more stats, use samtools stats.

samtools stats eg/ERR188273_chrX.bam | grep ^SN
## SN   raw total sequences:    1160084 # excluding supplementary and secondary reads
## SN   filtered sequences: 0
## SN   sequences:  1160084
## SN   is sorted:  1
## SN   1st fragments:  580042
## SN   last fragments: 580042
## SN   reads mapped:   1110685
## SN   reads mapped and paired:    1065618 # paired-end technology bit set + both mates mapped
## SN   reads unmapped: 49399
## SN   reads properly paired:  1060858 # proper-pair bit set
## SN   reads paired:   1160084 # paired-end technology bit set
## SN   reads duplicated:   0   # PCR or optical duplicate bit set
## SN   reads MQ0:  905 # mapped and MQ=0
## SN   reads QC failed:    0
## SN   non-primary alignments: 16276
## SN   supplementary alignments:   0
## SN   total length:   87006300    # ignores clipping
## SN   total first fragment length:    43503150    # ignores clipping
## SN   total last fragment length: 43503150    # ignores clipping
## SN   bases mapped:   83301375    # ignores clipping
## SN   bases mapped (cigar):   83064942    # more accurate
## SN   bases trimmed:  0
## SN   bases duplicated:   0
## SN   mismatches: 423271  # from NM fields
## SN   error rate: 5.095663e-03    # mismatches / bases mapped (cigar)
## SN   average length: 75
## SN   average first fragment length:  75
## SN   average last fragment length:   75
## SN   maximum length: 75
## SN   maximum first fragment length:  75
## SN   maximum last fragment length:   75
## SN   average quality:    36.0
## SN   insert size average:    182.7
## SN   insert size standard deviation: 176.0
## SN   inward oriented pairs:  530763
## SN   outward oriented pairs: 1042
## SN   pairs with other orientation:   1004
## SN   pairs on different chromosomes: 0
## SN   percentage of properly paired reads (%):    91.4

samtools calmd/fillmd

The calmd or fillmd tool is useful for visualising mismatches and insertions in an alignment of a read to a reference genome. The -e argument changes identical bases between the read and reference into =.

samtools view -b eg/ERR188273_chrX.bam | samtools fillmd -e - genome/chrX.fa > eg/ERR188273_chrX_fillmd.bam

head eg/ERR188273_chrX_fillmd.bam
## @HD  VN:1.0  SO:coordinate
## @SQ  SN:chrX LN:156040895
## @PG  ID:hisat2   PN:hisat2   VN:2.2.0    CL:"/Users/dtang/github/rnaseq/hisat2/../src/hisat2-2.2.0/hisat2-align-s --wrapper basic-0 --dta -p 4 -x ../raw/chrX_data/indexes/chrX_tran -1 /tmp/4195.inpipe1 -2 /tmp/4195.inpipe2"
## @PG  ID:samtools PN:samtools PP:hisat2   VN:1.16 CL:samtools view -b eg/ERR188273_chrX.bam
## @PG  ID:samtools.1   PN:samtools PP:samtools VN:1.16 CL:samtools fillmd -e - genome/chrX.fa
## ERR188273.4711308    73  chrX    21649   0   5S70M   =   21649   0   CGGGT====================================================================== @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.4711308    133 chrX    21649   0   *   =   21649   0   CTACAGGTGCCCGCCACCATGCCCAGCTAATTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACTGTGTTGGCC CB@FDFFFHHGFHIJJJJIIIIIIIGGGIJGIIJJJJJJFFHIIIIGECHEHHGGHHFF?AACCDDDDDDDDBCD YT:Z:UP
## ERR188273.4711308    329 chrX    233717  0   5S70M   =   233717  0   CGGGT====================================================================== @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.14904746   99  chrX    251271  60  75M =   251317  121 =========================================================================== @@<DDDDDFB>HHEGIIGAGIIIBGIIG@FECH<F@GIIFAE=?BCBBCBBB5@<?CBBCCCCAACDCCCCCCCC AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:75 YS:i:-2 YT:Z:CP NH:i:1
## ERR188273.14904746   147 chrX    251317  60  75M =   251271  -121    ======C==================================================================== #######B?DAHC@EGIIGGEHHGC@GFBFCEGFCIGG@EG@@H<JIEHEF@IGEHGHIIHFGHDDFDDDDD?<B AS:i:-2 ZS:i:-7 XN:i:0  XM:i:1  XO:i:0  XG:i:0  NM:i:1  MD:Z:6A68   YS:i:0  YT:Z:CP NH:i:1

Creating FASTQ files from a BAM file

Use the fastq tool to create FASTQ files from a BAM file. For paired-end reads, use -1 and -2 to create separate FASTA files.

samtools fastq -1 eg/ERR188273_chrX_1.fq -2 eg/ERR188273_chrX_2.fq eg/ERR188273_chrX.bam
head eg/ERR188273_chrX_1.fq
## [M::bam2fq_mainloop] discarded 0 singletons
## [M::bam2fq_mainloop] processed 1160084 reads
## @ERR188273.4711308
## CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA
## +
## @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@
## @ERR188273.14904746
## GAAAAATGGGCCCAGGGGACCGGCGCTCAGCATACAGAGGACCCGCGCCGGCACCTGCCTCTGAGTTCCCTTAGT
## +
## @@<DDDDDFB>HHEGIIGAGIIIBGIIG@FECH<F@GIIFAE=?BCBBCBBB5@<?CBBCCCCAACDCCCCCCCC
## @ERR188273.5849805
## CACGAGGTCAGGAGATCGACACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAATTAG

Random subsampling of BAM file

The SAMtools view -s parameter allows you to randomly sub-sample a BAM file. Using -s 0.5 will create a new BAM file with a random half of all mapped reads; unmapped reads are not sampled.

samtools view -s 0.5 -b eg/ERR188273_chrX.bam > eg/ERR188273_chrX_rand.bam

Count number of reads

Use samtools idxstats to print stats on a BAM file; this requires an index file which is created by running samtools index. The output of idxstats is a file with four tab-delimited columns:

  1. Reference name
  2. Sequence length of reference
  3. Number of mapped reads
  4. Number of unmapped reads
samtools idxstats eg/ERR188273_chrX.bam
## chrX 156040895   1126961 45067
## *    0   0   4332

We can use this with awk to calculate:

The number of mapped reads by summing the third column.

samtools idxstats eg/ERR188273_chrX.bam  | awk '{s+=$3} END {print s}'
## 1126961

The number of reads, which is the sum of mapped and unmapped reads.

samtools idxstats eg/ERR188273_chrX.bam | awk '{s+=$3+$4} END {print s}'
## 1176360

Obtaining genomic sequence

Use faidx to fetch genomic sequence; coordinates are 1-based.

We need to first index the reference FASTA file that was used to map the reads.

samtools faidx genome/chrX.fa

Now we can obtain the sequence.

samtools faidx genome/chrX.fa chrX:300000-300100
## >chrX:300000-300100
## ctgagatcgtgccactgcactccagcctgggcgacagagcgagactccatctcaaaaaaa
## aaaaaaaaaaaaaagaTggggtctctctatgttggccaggt

Comparing BAM files

The output from mpileup can be used to compare BAM files. The commands below generates alignments using bwa and minimap2.

len=100
n=10000
m=300
script/generate_random_seq.pl 30 1000000 1984 > test_ref.fa
script/random_paired_end.pl -f test_ref.fa -l ${len} -n ${n} -m ${m}
bwa index test_ref.fa 2> /dev/null

bwa mem test_ref.fa l${len}_n${n}_d${m}_1984_1.fq.gz l${len}_n${n}_d${m}_1984_2.fq.gz 2> /dev/null | samtools sort - -o aln_bwa.bam
minimap2 -ax sr test_ref.fa l${len}_n${n}_d${m}_1984_1.fq.gz l${len}_n${n}_d${m}_1984_2.fq.gz 2> /dev/null | samtools sort - -o aln_mm.bam

The BAM files can be used with mpileup to compare the depths.

samtools mpileup -s -f test_ref.fa aln_bwa.bam aln_mm.bam | head -20
## [mpileup] 2 samples in 2 input files
## 1    1694    C   1   ^]. D   ]   1   ^]. D   ]
## 1    1695    G   1   .   I   ]   1   .   I   ]
## 1    1696    T   1   .   J   ]   1   .   J   ]
## 1    1697    T   1   .   J   ]   1   .   J   ]
## 1    1698    A   1   .   J   ]   1   .   J   ]
## 1    1699    A   1   .   J   ]   1   .   J   ]
## 1    1700    T   1   .   J   ]   1   .   J   ]
## 1    1701    C   1   .   J   ]   1   .   J   ]
## 1    1702    A   1   .   J   ]   1   .   J   ]
## 1    1703    A   1   .   J   ]   1   .   J   ]
## 1    1704    T   1   .   J   ]   1   .   J   ]
## 1    1705    C   1   .   J   ]   1   .   J   ]
## 1    1706    C   1   .   J   ]   1   .   J   ]
## 1    1707    C   1   .   J   ]   1   .   J   ]
## 1    1708    C   1   .   J   ]   1   .   J   ]
## 1    1709    C   1   .   J   ]   1   .   J   ]
## 1    1710    A   1   .   J   ]   1   .   J   ]
## 1    1711    A   1   .   J   ]   1   .   J   ]
## 1    1712    C   1   .   J   ]   1   .   J   ]
## 1    1713    A   1   .   J   ]   1   .   J   ]

Another approach is to use deepTools and the bamCompare command. The bigWig output file shows the ratio of reads between b1 and b2 in 50 bp (default) windows.

Converting reference names

One of the most annoying bioinformatics problems is the use of different chromosome names, e.g. chr1 vs 1, in different references even when the sequences are identical. The GRCh38 reference downloaded from Ensembl has chromosome names without the chr:

>1 dna:chromosome chromosome:GRCh38:1:1:248956422:1 REF

Whereas the reference names from UCSC has the chr:

>chr1  AC:CM000663.2  gi:568336023  LN:248956422  rl:Chromosome  M5:6aef897c3d6ff0c78aff06ac189178dd  AS:GRCh38

Luckily you can change the reference names using samtools reheader but just make sure your reference sequences are actually identical.

samtools view eg/ERR188273_chrX.bam | head -2
## ERR188273.4711308    73  chrX    21649   0   5S70M   =   21649   0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.4711308    133 chrX    21649   0   *   =   21649   0   CTACAGGTGCCCGCCACCATGCCCAGCTAATTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACTGTGTTGGCC CB@FDFFFHHGFHIJJJJIIIIIIIGGGIJGIIJJJJJJFFHIIIIGECHEHHGGHHFF?AACCDDDDDDDDBCD YT:Z:UP

View header

samtools view -H eg/ERR188273_chrX.bam
## @HD  VN:1.0  SO:coordinate
## @SQ  SN:chrX LN:156040895
## @PG  ID:hisat2   PN:hisat2   VN:2.2.0    CL:"/Users/dtang/github/rnaseq/hisat2/../src/hisat2-2.2.0/hisat2-align-s --wrapper basic-0 --dta -p 4 -x ../raw/chrX_data/indexes/chrX_tran -1 /tmp/4195.inpipe1 -2 /tmp/4195.inpipe2"
## @PG  ID:samtools PN:samtools PP:hisat2   VN:1.16 CL:samtools view -H eg/ERR188273_chrX.bam

Substitute header with new name.

samtools view -H eg/ERR188273_chrX.bam | sed 's/SN:chrX/SN:X/' > eg/my_header

Save bam file with new ref and check it out.

samtools reheader eg/my_header eg/ERR188273_chrX.bam > eg/ERR188273_X.bam
samtools view eg/ERR188273_X.bam | head -2
## ERR188273.4711308    73  X   21649   0   5S70M   =   21649   0   CGGGTGATCACGAGGTCAGGAGATCAAGACCATCCTGGCCAACACAGTGAAACCCCATCTCTACTAAAAATACAA @@@F=DDFFHGHBHIFFHIGGIFGEGHFHIGIGIFIIIGIGIGGDHIIGIIC@>DGHCHHHGHHFFFFFDEACC@ AS:i:-5 ZS:i:-5 XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:70 YT:Z:UP NH:i:2
## ERR188273.4711308    133 X   21649   0   *   =   21649   0   CTACAGGTGCCCGCCACCATGCCCAGCTAATTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACTGTGTTGGCC CB@FDFFFHHGFHIJJJJIIIIIIIGGGIJGIIJJJJJJFFHIIIIGECHEHHGGHHFF?AACCDDDDDDDDBCD YT:Z:UP

Coverage

Coverage can mean the:

  1. average depth of each covered base
  2. percentage of bases covered

samtools depth and samtools mpileup can be used to indicate the depth of each covered base (and used to calculate the average depth. samtools coverage will provide both the average depth and percentage of bases covered per chromosome/reference sequence.

samtools depth will return three columns: reference, position, and coverage.

samtools depth eg/ERR188273_chrX.bam | head
## chrX 21649   1
## chrX 21650   1
## chrX 21651   1
## chrX 21652   1
## chrX 21653   1
## chrX 21654   1
## chrX 21655   1
## chrX 21656   1
## chrX 21657   1
## chrX 21658   1

The average depth can be calculated by summing the third column and dividing by the total number of bases (be sure to use -a).

samtools depth -@ 2 -a eg/ERR188273_chrX.bam | perl -ane '$t += $F[2]; END {$cov = $t / $.; printf "Bases covered:\t%.3f\nCoverage:\t%.3f\n", $., $cov}'
## Bases covered:   156040895.000
## Coverage:    0.532

The samtools mpileup command also provides depth information (but not for reads that have a mapping quality of 0, by default) with some additional information:

  1. Sequence name
  2. 1-based coordinate
  3. Reference base (when used with -f)
  4. Number of reads covering this position
  5. Read bases
  6. Base qualities
  7. Alignment mapping qualities (when used with -s)
samtools mpileup -f genome/chrX.fa -s eg/ERR188273_chrX.bam | head
## [mpileup] 1 samples in 1 input files
## chrX 251271  g   1   ^]. @   ]
## chrX 251272  a   1   .   @   ]
## chrX 251273  a   1   .   <   ]
## chrX 251274  a   1   .   D   ]
## chrX 251275  a   1   .   D   ]
## chrX 251276  a   1   .   D   ]
## chrX 251277  t   1   .   D   ]
## chrX 251278  g   1   .   D   ]
## chrX 251279  g   1   .   F   ]
## chrX 251280  g   1   .   B   ]

Note that the start of the samtools mpileup output differ from the start of the samtools depth output. This is because mpileup performs some filtering by default. In the case of this example, read pairs that are not both mapped will be ignored. To count these “orphan” reads, use the --count-orphans argument.

samtools mpileup -f genome/chrX.fa --count-orphans -s eg/ERR188273_chrX.bam | head
## [mpileup] 1 samples in 1 input files
## chrX 21649   g   0   *   *   *
## chrX 21650   a   1   .   D   !
## chrX 21651   t   1   .   F   !
## chrX 21652   c   1   .   F   !
## chrX 21653   a   1   .   H   !
## chrX 21654   c   1   .   G   !
## chrX 21655   g   1   .   H   !
## chrX 21656   a   1   .   B   !
## chrX 21657   g   1   .   H   !
## chrX 21658   g   1   .   I   !

In addition mpileup performs “per-Base Alignment Quality” (BAQ) by default and will adjust base quality scores. The default behaviour to to skip bases with baseQ/BAQ smaller than 13. If you are finding discrepancies between mpileup’s coverage calculation with another coverage tool, you can either set --min-BQ to 0 or use --no-BAQ to disable BAQ.

I have an old blog post on using mpileup.

samtools coverage will provide the following coverage statistics:

  1. rname - Reference name / chromosome
  2. startpos - Start position
  3. endpos - End position (or sequence length)
  4. numreads - Number reads aligned to the region (after filtering)
  5. covbases - Number of covered bases with depth >= 1
  6. coverage - Proportion of covered bases [0..1]
  7. meandepth - Mean depth of coverage
  8. meanbaseq - Mean base quality in covered region
  9. meanmapq - Mean mapping quality of selected reads
samtools coverage eg/ERR188273_chrX.bam
## #rname   startpos    endpos  numreads    covbases    coverage    meandepth   meanbaseq   meanmapq
## chrX 1   156040895   1110685 3402037 2.18022 0.532299    36.3    59.4

The example BAM file only contains reads for chrX hence the statistics are only returned for chrX.

Returning to our coverage definition at the start of this section:

  1. average depth of each covered base = meandepth
  2. percentage of bases covered = covbases

Stargazers over time

Stargazers over time

More Repositories

1

learning_vcf_file

Learning the Variant Call Format
Perl
124
star
2

learning_docker

Learning about Docker.
Dockerfile
44
star
3

machine_learning

Machine learning in R
R
26
star
4

defining_genomic_regions

Define regions in the genome
Perl
20
star
5

sars_cov_2

Bioinformatics analysis of SARS-CoV-2
Perl
15
star
6

reproducible_bioinformatics

Workshop material for BioC Asia 2019
R
12
star
7

romim

R package for querying the OMIM database
R
12
star
8

learning_random_forest

Notes and code for learning Random Forests
11
star
9

cv

My curriculum vitae
HTML
9
star
10

getting_started_with_c

Learning how to code in C
C
6
star
11

learning_python

My repository for learning Python
Jupyter Notebook
6
star
12

human_phenotype_ontology

Resources for working with the Human Phenotype Ontology
Perl
6
star
13

importbio

R
4
star
14

getting_started_with_latex

Getting started with LaTeX
TeX
4
star
15

research_parasite

How research parasites can download your data!
4
star
16

bioinformatics_tips

R
3
star
17

learning_r

R notes
R
3
star
18

learning_bash

My Bash notes
Shell
3
star
19

rnaseq

RNA-seq analyses.
Shell
3
star
20

tang_sd_2015

Perl
2
star
21

getting_started_with_git

Learning Git
Shell
2
star
22

learning_quarto

Quarto is a multi-language, next-generation version of R Markdown from Posit
Shell
1
star
23

archs4_heatmap

Gene heatmap using ARCHS4
R
1
star
24

cookiemonster

Cookiecutter templates
Shell
1
star
25

22722852

Site-specific DICER and DROSHA RNA products control the DNA-damage response
Perl
1
star
26

learning_singularity

Learning about Singularity (the container platform and not the technological singularity)
Singularity
1
star
27

onemanarmy

Sometimes you just need to know everything, whether you like it or not
1
star
28

22976001

Analysis for the paper "piRNAs warrant investigation in Rett Syndrome: an omics perspective"
Shell
1
star
29

learning_rust

Rust
1
star
30

multimapping

Investigate the multimapping behaviour of sequence aligners
Shell
1
star
31

learning_vim

Vim notes
Vim Script
1
star