• Stars
    star
    14,690
  • Rank 2,022 (Top 0.04 %)
  • Language
  • License
    Creative Commons ...
  • Created over 3 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

๐Ÿ“บ Discover the latest machine learning / AI courses on YouTube.

๐Ÿ“บ ML YouTube Courses

At DAIR.AI we โค๏ธ open AI education. In this repo, we index and organize some of the best and most recent machine learning courses available on YouTube.

Machine Learning

Deep Learning

Scientific Machine Learning

Practical Machine Learning

Natural Language Processing

Computer Vision

Reinforcement Learning

Graph Machine Learning

Multi-Task Learning

Others


Caltech CS156: Learning from Data

An introductory course in machine learning that covers the basic theory, algorithms, and applications.

  • Lecture 1: The Learning Problem
  • Lecture 2: Is Learning Feasible?
  • Lecture 3: The Linear Model I
  • Lecture 4: Error and Noise
  • Lecture 5: Training versus Testing
  • Lecture 6: Theory of Generalization
  • Lecture 7: The VC Dimension
  • Lecture 8: Bias-Variance Tradeoff
  • Lecture 9: The Linear Model II
  • Lecture 10: Neural Networks
  • Lecture 11: Overfitting
  • Lecture 12: Regularization
  • Lecture 13: Validation
  • Lecture 14: Support Vector Machines
  • Lecture 15: Kernel Methods
  • Lecture 16: Radial Basis Functions
  • Lecture 17: Three Learning Principles
  • Lecture 18: Epilogue

๐Ÿ”— Link to Course

Stanford CS229: Machine Learning

To learn some of the basics of ML:

  • Linear Regression and Gradient Descent
  • Logistic Regression
  • Naive Bayes
  • SVMs
  • Kernels
  • Decision Trees
  • Introduction to Neural Networks
  • Debugging ML Models ...

๐Ÿ”— Link to Course

Making Friends with Machine Learning

A series of mini lectures covering various introductory topics in ML:

  • Explainability in AI
  • Classification vs. Regression
  • Precession vs. Recall
  • Statistical Significance
  • Clustering and K-means
  • Ensemble models ...

๐Ÿ”— Link to Course

Neural Networks: Zero to Hero (by Andrej Karpathy)

Course providing an in-depth overview of neural networks.

  • Backpropagation
  • Spelled-out intro to Language Modeling
  • Activation and Gradients
  • Becoming a Backprop Ninja

๐Ÿ”— Link to Course

MIT: Deep Learning for Art, Aesthetics, and Creativity

Covers the application of deep learning for art, aesthetics, and creativity.

  • Nostalgia -> Art -> Creativity -> Evolution as Data + Direction
  • Efficient GANs
  • Explorations in AI for Creativity
  • Neural Abstractions
  • Easy 3D Content Creation with Consistent Neural Fields ...

๐Ÿ”— Link to Course

Stanford CS230: Deep Learning (2018)

Covers the foundations of deep learning, how to build different neural networks(CNNs, RNNs, LSTMs, etc...), how to lead machine learning projects, and career advice for deep learning practitioners.

  • Deep Learning Intuition
  • Adversarial examples - GANs
  • Full-cycle of a Deep Learning Project
  • AI and Healthcare
  • Deep Learning Strategy
  • Interpretability of Neural Networks
  • Career Advice and Reading Research Papers
  • Deep Reinforcement Learning

๐Ÿ”— Link to Course ๐Ÿ”— Link to Materials

Applied Machine Learning

To learn some of the most widely used techniques in ML:

  • Optimization and Calculus
  • Overfitting and Underfitting
  • Regularization
  • Monte Carlo Estimation
  • Maximum Likelihood Learning
  • Nearest Neighbours
  • ...

๐Ÿ”— Link to Course

Introduction to Machine Learning (Tรผbingen)

The course serves as a basic introduction to machine learning and covers key concepts in regression, classification, optimization, regularization, clustering, and dimensionality reduction.

  • Linear regression
  • Logistic regression
  • Regularization
  • Boosting
  • Neural networks
  • PCA
  • Clustering
  • ...

๐Ÿ”— Link to Course

Machine Learning Lecture (Stefan Harmeling)

Covers many fundamental ML concepts:

  • Bayes rule
  • From logic to probabilities
  • Distributions
  • Matrix Differential Calculus
  • PCA
  • K-means and EM
  • Causality
  • Gaussian Processes
  • ...

๐Ÿ”— Link to Course

Statistical Machine Learning (Tรผbingen)

The course covers the standard paradigms and algorithms in statistical machine learning.

  • KNN
  • Bayesian decision theory
  • Convex optimization
  • Linear and ridge regression
  • Logistic regression
  • SVM
  • Random Forests
  • Boosting
  • PCA
  • Clustering
  • ...

๐Ÿ”— Link to Course

Practical Deep Learning for Coders

This course covers topics such as how to:

  • Build and train deep learning models for computer vision, natural language processing, tabular analysis, and collaborative filtering problems
  • Create random forests and regression models
  • Deploy models
  • Use PyTorch, the worldโ€™s fastest growing deep learning software, plus popular libraries like fastai and Hugging Face
  • Foundations and Deep Dive to Diffusion Models
  • ...

๐Ÿ”— Link to Course - Part 1

๐Ÿ”— Link to Course - Part 2

Stanford MLSys Seminars

A seminar series on all sorts of topics related to building machine learning systems.

๐Ÿ”— Link to Lectures

Machine Learning Engineering for Production (MLOps)

Specialization course on MLOPs by Andrew Ng.

๐Ÿ”— Link to Lectures

MIT Introduction to Data-Centric AI

Covers the emerging science of Data-Centric AI (DCAI) that studies techniques to improve datasets, which is often the best way to improve performance in practical ML applications. Topics include:

  • Data-Centric AI vs. Model-Centric AI
  • Label Errors
  • Dataset Creation and Curation
  • Data-centric Evaluation of ML Models
  • Class Imbalance, Outliers, and Distribution Shift
  • ...

๐Ÿ”— Course Website

๐Ÿ”— Lecture Videos

๐Ÿ”— Lab Assignments

Machine Learning with Graphs (Stanford)

To learn some of the latest graph techniques in machine learning:

  • PageRank
  • Matrix Factorizing
  • Node Embeddings
  • Graph Neural Networks
  • Knowledge Graphs
  • Deep Generative Models for Graphs
  • ...

๐Ÿ”— Link to Course

Probabilistic Machine Learning

To learn the probabilistic paradigm of ML:

  • Reasoning about uncertainty
  • Continuous Variables
  • Sampling
  • Markov Chain Monte Carlo
  • Gaussian Distributions
  • Graphical Models
  • Tuning Inference Algorithms
  • ...

MIT 6.S897: Machine Learning for Healthcare (2019)

This course introduces students to machine learning in healthcare, including the nature of clinical data and the use of machine learning for risk stratification, disease progression modeling, precision medicine, diagnosis, subtype discovery, and improving clinical workflows.

๐Ÿ”— Link to Course

Introduction to Deep Learning

To learn some of the fundamentals of deep learning:

  • Introduction to Deep Learning

๐Ÿ”— Link to Course

CMU Introduction to Deep Learning (11-785)

The course starts off gradually from MLPs (Multi Layer Perceptrons) and then progresses into concepts like attention and sequence-to-sequence models.

๐Ÿ”— Link to Course
๐Ÿ”— Lectures
๐Ÿ”— Tutorials/Recitations

Deep Learning: CS 182

To learn some of the widely used techniques in deep learning:

  • Machine Learning Basics
  • Error Analysis
  • Optimization
  • Backpropagation
  • Initialization
  • Batch Normalization
  • Style transfer
  • Imitation Learning
  • ...

๐Ÿ”— Link to Course

Deep Unsupervised Learning

To learn the latest and most widely used techniques in deep unsupervised learning:

  • Autoregressive Models
  • Flow Models
  • Latent Variable Models
  • Self-supervised learning
  • Implicit Models
  • Compression
  • ...

๐Ÿ”— Link to Course

NYU Deep Learning SP21

To learn some of the advanced techniques in deep learning:

  • Neural Nets: rotation and squashing
  • Latent Variable Energy Based Models
  • Unsupervised Learning
  • Generative Adversarial Networks
  • Autoencoders
  • ...

๐Ÿ”— Link to Course

Foundation Models

To learn about foundation models like GPT-3, CLIP, Flamingo, Codex, and DINO.

๐Ÿ”— Link to Course

Deep Learning (Tรผbingen)

This course introduces the practical and theoretical principles of deep neural networks.

  • Computation graphs
  • Activation functions and loss functions
  • Training, regularization and data augmentation
  • Basic and state-of-the-art deep neural network architectures including convolutional networks and graph neural networks
  • Deep generative models such as auto-encoders, variational auto-encoders and generative adversarial networks
  • ...

๐Ÿ”— Link to Course

Parallel Computing and Scientific Machine Learning

  • The Basics of Scientific Simulators
  • Introduction to Parallel Computing
  • Continuous Dynamics
  • Inverse Problems and Differentiable Programming
  • Distributed Parallel Computing
  • Physics-Informed Neural Networks and Neural Differential Equations
  • Probabilistic Programming, AKA Bayesian Estimation on Programs
  • Globalizing the Understanding of Models

๐Ÿ”— Link to Course

Stanford CS25 - Transformers United

This course consists of lectures focused on Transformers, providing a deep dive and their applications

  • Introduction to Transformers
  • Transformers in Language: GPT-3, Codex
  • Applications in Vision
  • Transformers in RL & Universal Compute Engines
  • Scaling transformers
  • Interpretability with transformers
  • ...

๐Ÿ”— Link to Course

NLP Course (Hugging Face)

Learn about different NLP concepts and how to apply language models and Transformers to NLP:

  • What is Transfer Learning?
  • BPE Tokenization
  • Batching inputs
  • Fine-tuning models
  • Text embeddings and semantic search
  • Model evaluation
  • ...

๐Ÿ”— Link to Course

CS224N: Natural Language Processing with Deep Learning

To learn the latest approaches for deep learning based NLP:

  • Dependency parsing
  • Language models and RNNs
  • Question Answering
  • Transformers and pretraining
  • Natural Language Generation
  • T5 and Large Language Models
  • Future of NLP
  • ...

๐Ÿ”— Link to Course

CMU Neural Networks for NLP

To learn the latest neural network based techniques for NLP:

  • Language Modeling
  • Efficiency tricks
  • Conditioned Generation
  • Structured Prediction
  • Model Interpretation
  • Advanced Search Algorithms
  • ...

๐Ÿ”— Link to Course

CS224U: Natural Language Understanding

To learn the latest concepts in natural language understanding:

  • Grounded Language Understanding
  • Relation Extraction
  • Natural Language Inference (NLI)
  • NLU and Neural Information Extraction
  • Adversarial testing
  • ...

๐Ÿ”— Link to Course

CMU Advanced NLP

To learn:

  • Basics of modern NLP techniques
  • Multi-task, Multi-domain, multi-lingual learning
  • Prompting + Sequence-to-sequence pre-training
  • Interpreting and Debugging NLP Models
  • Learning from Knowledge-bases
  • Adversarial learning
  • ...

๐Ÿ”— Link to 2021 Edition

๐Ÿ”— Link to 2022 Edition

Multilingual NLP

To learn the latest concepts for doing multilingual NLP:

  • Typology
  • Words, Part of Speech, and Morphology
  • Advanced Text Classification
  • Machine Translation
  • Data Augmentation for MT
  • Low Resource ASR
  • Active Learning
  • ...

๐Ÿ”— Link to 2020 Course

๐Ÿ”— Link to 2022 Course

Advanced NLP

To learn advanced concepts in NLP:

  • Attention Mechanisms
  • Transformers
  • BERT
  • Question Answering
  • Model Distillation
  • Vision + Language
  • Ethics in NLP
  • Commonsense Reasoning
  • ...

๐Ÿ”— Link to Course

CS231N: Convolutional Neural Networks for Visual Recognition

Stanford's Famous CS231n course. The videos are only available for the Spring 2017 semester. The course is currently known as Deep Learning for Computer Vision, but the Spring 2017 version is titled Convolutional Neural Networks for Visual Recognition.

  • Image Classification
  • Loss Functions and Optimization
  • Introduction to Neural Networks
  • Convolutional Neural Networks
  • Training Neural Networks
  • Deep Learning Software
  • CNN Architectures
  • Recurrent Neural Networks
  • Detection and Segmentation
  • Visualizing and Understanding
  • Generative Models
  • Deep Reinforcement Learning

๐Ÿ”— Link to Course ๐Ÿ”— Link to Materials

Deep Learning for Computer Vision

To learn some of the fundamental concepts in CV:

  • Introduction to deep learning for CV
  • Image Classification
  • Convolutional Networks
  • Attention Networks
  • Detection and Segmentation
  • Generative Models
  • ...

๐Ÿ”— Link to Course

Deep Learning for Computer Vision (DL4CV)

To learn modern methods for computer vision:

  • CNNs
  • Advanced PyTorch
  • Understanding Neural Networks
  • RNN, Attention and ViTs
  • Generative Models
  • GPU Fundamentals
  • Self-Supervision
  • Neural Rendering
  • Efficient Architectures

๐Ÿ”— Link to Course

AMMI Geometric Deep Learning Course

To learn about concepts in geometric deep learning:

  • Learning in High Dimensions
  • Geometric Priors
  • Grids
  • Manifolds and Meshes
  • Sequences and Time Warping
  • ...

๐Ÿ”— Link to Course

Deep Reinforcement Learning

To learn the latest concepts in deep RL:

  • Intro to RL
  • RL algorithms
  • Real-world sequential decision making
  • Supervised learning of behaviors
  • Deep imitation learning
  • Cost functions and reward functions
  • ...

๐Ÿ”— Link to Course

Reinforcement Learning Lecture Series (DeepMind)

The Deep Learning Lecture Series is a collaboration between DeepMind and the UCL Centre for Artificial Intelligence.

  • Introduction to RL
  • Dynamic Programming
  • Model-free algorithms
  • Deep reinforcement learning
  • ...

๐Ÿ”— Link to Course

Full Stack Deep Learning

To learn full-stack production deep learning:

  • ML Projects
  • Infrastructure and Tooling
  • Experiment Managing
  • Troubleshooting DNNs
  • Data Management
  • Data Labeling
  • Monitoring ML Models
  • Web deployment
  • ...

๐Ÿ”— Link to Course

Introduction to Deep Learning and Deep Generative Models

Covers the fundamental concepts of deep learning

  • Single-layer neural networks and gradient descent
  • Multi-layer neural networks and backpropagation
  • Convolutional neural networks for images
  • Recurrent neural networks for text
  • Autoencoders, variational autoencoders, and generative adversarial networks
  • Encoder-decoder recurrent neural networks and transformers
  • PyTorch code examples

๐Ÿ”— Link to Course ๐Ÿ”— Link to Materials

Self-Driving Cars (Tรผbingen)

Covers the most dominant paradigms of self-driving cars: modular pipeline-based approaches as well as deep-learning based end-to-end driving techniques.

  • Camera, lidar and radar-based perception
  • Localization, navigation, path planning
  • Vehicle modeling/control
  • Deep Learning
  • Imitation learning
  • Reinforcement learning

๐Ÿ”— Link to Course

Reinforcement Learning (Polytechnique Montreal, Fall 2021)

Designing autonomous decision making systems is one of the longstanding goals of Artificial Intelligence. Such decision making systems, if realized, can have a big impact in machine learning for robotics, game playing, control, health care to name a few. This course introduces Reinforcement Learning as a general framework to design such autonomous decision making systems.

  • Introduction to RL
  • Multi-armed bandits
  • Policy Gradient Methods
  • Contextual Bandits
  • Finite Markov Decision Process
  • Dynamic Programming
  • Policy Iteration, Value Iteration
  • Monte Carlo Methods
  • ...

๐Ÿ”— Link to Course ๐Ÿ”— Link to Materials

Foundations of Deep RL

A mini 6-lecture series by Pieter Abbeel.

  • MDPs, Exact Solution Methods, Max-ent RL
  • Deep Q-Learning
  • Policy Gradients and Advantage Estimation
  • TRPO and PPO
  • DDPG and SAC
  • Model-based RL

๐Ÿ”— Link to Course

Stanford CS234: Reinforcement Learning

Covers topics from basic concepts of Reinforcement Learning to more advanced ones:

  • Markov decision processes & planning
  • Model-free policy evaluation
  • Model-free control
  • Reinforcement learning with function approximation & Deep RL
  • Policy Search
  • Exploration
  • ...

๐Ÿ”— Link to Course ๐Ÿ”— Link to Materials

Stanford CS330: Deep Multi-Task and Meta Learning

This is a graduate-level course covering different aspects of deep multi-task and meta learning.

  • Multi-task learning, transfer learning basics
  • Meta-learning algorithms
  • Advanced meta-learning topics
  • Multi-task RL, goal-conditioned RL
  • Meta-reinforcement learning
  • Hierarchical RL
  • Lifelong learning
  • Open problems

๐Ÿ”— Link to Course ๐Ÿ”— Link to Materials

MIT Deep Learning in Life Sciences

A course introducing foundations of ML for applications in genomics and the life sciences more broadly.

  • Interpreting ML Models
  • DNA Accessibility, Promoters and Enhancers
  • Chromatin and gene regulation
  • Gene Expression, Splicing
  • RNA-seq, Splicing
  • Single cell RNA-sequencing
  • Dimensionality Reduction, Genetics, and Variation
  • Drug Discovery
  • Protein Structure Prediction
  • Protein Folding
  • Imaging and Cancer
  • Neuroscience

๐Ÿ”— Link to Course

๐Ÿ”— Link to Materials

Advanced Robotics: UC Berkeley

This is course is from Peter Abbeel and covers a review on reinforcement learning and continues to applications in robotics.

  • MDPs: Exact Methods
  • Discretization of Continuous State Space MDPs
  • Function Approximation / Feature-based Representations
  • LQR, iterative LQR / Differential Dynamic Programming
  • ...

๐Ÿ”— Link to Course ๐Ÿ”— Link to Materials


Reach out on Twitter if you have any questions.

If you are interested to contribute, feel free to open a PR with a link to the course. It will take a bit of time, but I have plans to do many things with these individual lectures. We can summarize the lectures, include notes, provide additional reading material, include difficulty of content, etc.

You can now find ML Course notes here.

More Repositories

1

Prompt-Engineering-Guide

๐Ÿ™ Guides, papers, lecture, notebooks and resources for prompt engineering
MDX
47,520
star
2

ml-visuals

๐ŸŽจ ML Visuals contains figures and templates which you can reuse and customize to improve your scientific writing.
13,103
star
3

ML-Papers-of-the-Week

๐Ÿ”ฅHighlighting the top ML papers every week.
9,856
star
4

ML-Papers-Explained

Explanation to key concepts in ML
7,016
star
5

ML-Course-Notes

๐ŸŽ“ Sharing machine learning course / lecture notes.
5,980
star
6

Mathematics-for-ML

๐Ÿงฎ A collection of resources to learn mathematics for machine learning
4,399
star
7

ML-Notebooks

๐Ÿ”ฅ Machine Learning Notebooks
Jupyter Notebook
3,270
star
8

Transformers-Recipe

๐Ÿง  A study guide to learn about Transformers
1,521
star
9

nlp_paper_summaries

โœ๏ธ A carefully curated list of NLP paper summaries
1,476
star
10

GNNs-Recipe

๐ŸŸ  A study guide to learn about Graph Neural Networks (GNNs)
1,095
star
11

MLOPs-Primer

A collection of resources to learn about MLOPs.
925
star
12

AI-Product-Index

A curated index to track AI-powered products.
755
star
13

d2l-study-group

๐Ÿง  Material for the Deep Learning Study Group
388
star
14

nlp_fundamentals

๐Ÿ“˜ Contains a series of hands-on notebooks for learning the fundamentals of NLP
Jupyter Notebook
364
star
15

nlp_newsletter

๐Ÿ“ฐNatural language processing (NLP) newsletter
300
star
16

awesome-ML-projects-guide

A guide to building awesome machine learning projects.
242
star
17

dair-ai.github.io

Home of DAIR.AI
HTML
208
star
18

emotion_dataset

๐Ÿ˜„ Dataset for Emotion Recognition Research
197
star
19

awesome-research-proposals-guide

A guide to improve your research proposals.
185
star
20

ml-nlp-paper-discussions

๐Ÿ“„ A repo containing notes and discussions for our weekly NLP/ML paper discussions.
149
star
21

keep-learning-ml

A club to keep learning about ML
89
star
22

notebooks

๐Ÿ”ฌ Sharing your data science notebooks with the community has never been this easy.
Jupyter Notebook
37
star
23

covid_19_search_application

Text Similarity Search Application using Modern NLP and Elasticsearch
Jupyter Notebook
29
star
24

odsc_2020_nlp

Repository for ODSC talk related to Deep Learning NLP
23
star
25

research_emotion_analysis

๐Ÿ˜„ Multilingual emotion analysis research
Python
19
star
26

maven-pe-for-llms-4

Prompt Engineering for Large Language Models - Notebooks, Demos, Exercises, and Projects
Jupyter Notebook
17
star
27

data_science_writing_primer

Writing Primer for Data Scientists
Jupyter Notebook
17
star
28

arxiv_analysis

A project to help explore research papers and fuel new discovery
Jupyter Notebook
16
star
29

pe-for-llms

Jupyter Notebook
14
star
30

llm-evaluator

Example for Logging LLM Evaluator Prompt Responses
Jupyter Notebook
14
star
31

paper_implementations

A project for implementing ML and NLP papers
13
star
32

maven-pe-for-llms

Jupyter Notebook
12
star
33

nlp-roadmap

A comprehensive roadmap to get informed of the NLP landscape.
9
star
34

ml-discussions

Discussing ML research, engineering, papers, resources, learning paths, best practices, and much more.
8
star
35

maven-pe-for-llms-6

Materials for the Prompt Engineering for LLMs (Cohort 6)
Jupyter Notebook
8
star
36

maven-pe-for-llms-8

Materials for the Prompt Engineering for LLMs (Cohort 8)
Jupyter Notebook
8
star
37

maven-pe-for-llms-7

Code, Demos, and Exercises for Prompt Engineering for LLMs Course
Jupyter Notebook
6
star
38

maven-pe-for-llms-12

Course material for Prompt Engineering for LLMs
Jupyter Notebook
6
star
39

maven-pe-for-llms-9

Materials for Prompt Engineering for LLMs (Cohort 9)
Jupyter Notebook
6
star
40

paper_presentations

All paper presentation material will be added here
5
star
41

nlp_research_highlights

Contains all issues of the NLP Research Highlights series
5
star
42

deep_affective_layer

๐Ÿ˜„ Building a deep learning based affective computing platform
3
star
43

maven-pe-for-llms-2

Jupyter Notebook
3
star
44

datasets

AI Datasets
3
star
45

maven-pe-for-llms-11

Materials for the Prompt Engineering for LLMs Course (Cohort 11)
Jupyter Notebook
3
star
46

.github

2
star
47

meetups

Material for dair.ai meetups
2
star
48

tensorflow_notebooks

A repository containing Deep Learning and Machine Learning related TensorFlow notebooks.
1
star
49

maven-pe-for-llms-10

Materials for Cohort 10
Jupyter Notebook
1
star