• Stars
    star
    118
  • Rank 299,923 (Top 6 %)
  • Language
    JavaScript
  • Created over 3 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Build a Full Stack Marketplace on Ethereum with React, Solidity, Hardhat, and Ethers.js

Building a Digital Marketplace on Ethereum

This workshop will walk you through creating a digital marketplace on Ethereum.

The technologies used in this workshop are React, Next.js, Tailwind CSS, HardHat, Solidity, and Ethers.

Getting started

The first thing we need to do is write the smart contracts.

The marketplace will consist of two main smart contracts:

  • NFT Contract for minting NFTs
  • Markeplace contract for facilitating the sale of NFTs

For writing an NFT, we can use the ERC721 standard that is available via OpenZeppelin.

To get started, head over to https://remix.ethereum.org/ and create a new file called Marketplace.sol.

Here, we can get started by importing the contracts that we'll be needing to get started from Open Zeppelin:

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity ^0.8.3;

import "@openzeppelin/contracts/utils/Counters.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol";
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

import "hardhat/console.sol";

Creating the NFT contract

Next, let's create the NFT contract:

contract NFT is ERC721URIStorage {
    using Counters for Counters.Counter;
    Counters.Counter private _tokenIds;
    address contractAddress;

    constructor(address marketplaceAddress) ERC721("Eat The Blocks NFTs", "ETBNFT") {
        contractAddress = marketplaceAddress;
    }

    function createToken(string memory tokenURI) public returns (uint) {
        _tokenIds.increment();
        uint256 newItemId = _tokenIds.current();

        _mint(msg.sender, newItemId);
        _setTokenURI(newItemId, tokenURI);
        setApprovalForAll(contractAddress, true);
        return newItemId;
    }
}

The contstructor takes an argument for the marketplaceAddress address, saving the value and making it available in the smart contract. This way when someone calls createToken, the contract can allow the Market contract approval to transfer the token away from the owner to the seller.

The newItemId value is returned from the function as we will be needing it in our client application to know the dynamic value of the tokenId that was generated by the smart contract.

Creating the Market contract

The Market contract is more complex than the NFT contract since we will be writing all of it from scratch.

contract NFTMarket is ReentrancyGuard {
  using Counters for Counters.Counter;
  Counters.Counter private _itemIds;
  Counters.Counter private _itemsSold;

  struct MarketItem {
    uint itemId;
    address nftContract;
    uint256 tokenId;
    address payable seller;
    address payable owner;
    uint256 price;
  }

  mapping(uint256 => MarketItem) private idToMarketItem;

  event MarketItemCreated (
    uint indexed itemId,
    address indexed nftContract,
    uint256 indexed tokenId,
    address seller,
    address owner,
    uint256 price
  );

  function getMarketItem(uint256 marketItemId) public view returns (MarketItem memory) {
    return idToMarketItem[marketItemId];
  }

  function createMarketItem(
    address nftContract,
    uint256 tokenId,
    uint256 price
  ) public payable nonReentrant {
    require(price > 0, "Price must be at least 1 wei");

    _itemIds.increment();
    uint256 itemId = _itemIds.current();
  
    idToMarketItem[itemId] =  MarketItem(
      itemId,
      nftContract,
      tokenId,
      payable(msg.sender),
      payable(address(0)),
      price
    );

    IERC721(nftContract).transferFrom(msg.sender, address(this), tokenId);

    emit MarketItemCreated(
      itemId,
      nftContract,
      tokenId,
      msg.sender,
      address(0),
      price
    );
  }

  function createMarketSale(
    address nftContract,
    uint256 itemId
    ) public payable nonReentrant {
    uint price = idToMarketItem[itemId].price;
    uint tokenId = idToMarketItem[itemId].tokenId;
    require(msg.value == price, "Please submit the asking price in order to complete the purchase");

    idToMarketItem[itemId].seller.transfer(msg.value);
    IERC721(nftContract).transferFrom(address(this), msg.sender, tokenId);
    idToMarketItem[itemId].owner = payable(msg.sender);
    _itemsSold.increment();
  }

  function fetchMarketItem(uint itemId) public view returns (MarketItem memory) {
    MarketItem memory item = idToMarketItem[itemId];
    return item;
  }

  function fetchMarketItems() public view returns (MarketItem[] memory) {
    uint itemCount = _itemIds.current();
    uint unsoldItemCount = _itemIds.current() - _itemsSold.current();
    uint currentIndex = 0;

    MarketItem[] memory items = new MarketItem[](unsoldItemCount);
    for (uint i = 0; i < itemCount; i++) {
      if (idToMarketItem[i + 1].owner == address(0)) {
        uint currentId = idToMarketItem[i + 1].itemId;
        MarketItem storage currentItem = idToMarketItem[currentId];
        items[currentIndex] = currentItem;
        currentIndex += 1;
      }
    }
   
    return items;
  }

  function fetchMyNFTs() public view returns (MarketItem[] memory) {
    uint totalItemCount = _itemIds.current();
    uint itemCount = 0;
    uint currentIndex = 0;

    for (uint i = 0; i < totalItemCount; i++) {
      if (idToMarketItem[i + 1].owner == msg.sender) {
        itemCount += 1;
      }
    }

    MarketItem[] memory items = new MarketItem[](itemCount);
    for (uint i = 0; i < totalItemCount; i++) {
      if (idToMarketItem[i + 1].owner == msg.sender) {
        uint currentId = idToMarketItem[i + 1].itemId;
        MarketItem storage currentItem = idToMarketItem[currentId];
        items[currentIndex] = currentItem;
        currentIndex += 1;
      }
    }
   
    return items;
  }
}

There is a lot going on in this contract, so let's walk through some of it.

What is ReentrancyGuard

Inheriting from ReentrancyGuard will make the nonReentrant modifier available, which can be applied to functions to make sure there are no nested (reentrant) calls to them.

MarketItem

The MarketItem struct allows us to store records of items that we want to make available in the marketplace.

idToMarketItem

This mapping allows us to create a key value pairing between IDs and MarketItems.

createMarketItem

This function transfers an NFT to the contract address of the market, and puts the item for sale.

createMarketSale

This function enables the transfer of the NFT as well as Eth between the buyer and seller.

fetchMarketItems

This function returns all market items that are still for sale.

fetchMyNFTs

This function returns the NFTs that the user has purchased.

Building the front end

To build the front end, you can use the starting project in the marketplace_starter folder.

If you'd like to know how to bootstrap the project from scratch yourself, follow these steps
  1. Create a new Next.js app and change into the directory:
npx create-next-app marketplace-app
cd marketplace-app
  1. Install the necessary dependencies:
npm install web3modal ethers hardhat @nomiclabs/hardhat-waffle ethereum-waffle chai \ 
@nomiclabs/hardhat-ethers axios ipfs-http-client @openzeppelin/contracts

Optional, install tailwind and dependencies:

npm install -D tailwindcss@latest postcss@latest autoprefixer@latest

npx tailwindcss init -p

update styles/globals.css with the following
@tailwind base;
@tailwind components;
@tailwind utilities;
  1. Initialize Hardhat environment
npx hardhat
? What do you want to do? Create a sample project
? Hardhat project root: <Choose default path>
  1. Open hardhat.config.js and update the module.exports to look like this:
module.exports = {
  solidity: "0.8.3",
  paths: {
    artifacts: './src/artifacts',
  },
  networks: {
    hardhat: {
      chainId: 1337
    }
  }
};

Dowloading and configuring the project

Clone the repo, then change into the marketplace-starter directory, and install the dependencies:

git clone https://github.com/dabit3/full-stack-ethereum-marketplace-workshop.git

cd full-stack-ethereum-marketplace-workshop/marketplace-starter

yarn

# or

npm install

Next, take a look at the tests in test/test.js. Here, we can mock the functionality that we'll need for our project.

To run the test and see the output, run the following command:

npx hardhat test

The smart contracts

The smart contracts are located in the contracts directory.

To use the smart contracts in our front-end (React) applications, we'll need to compile the contract into ABIs.

The Hardhat development environment allows us to do this using the Hardhat CLI.

We can define the location of the artifacts output by configuring its location in hardhat.config.js along with any other properties for our Hardhat development environment.

In our project, the location is set to ./artifacts in the root directory.

Writing the deployment script

Next, let's write the script to deploy the contracts.

To do so, open scripts/deploy.js and add the following to the main function body:

async function main() {
  const NFTMarket = await hre.ethers.getContractFactory("NFTMarket");
  const nftMarket = await NFTMarket.deploy();
  await nftMarket.deployed();
  console.log("nftMarket deployed to:", nftMarket.address);

  const NFT = await hre.ethers.getContractFactory("NFT");
  const nft = await NFT.deploy(nftMarket.address);
  await nft.deployed();
  console.log("nft deployed to:", nft.address);
}

Running a local node and deploying the contract

Next, let's run a local node and deploy our contract to the node.

To do so, open your terminal and run the following command:

npx hardhat node

This should create and launch a local node.

Next, open another terminal and deploy the contracts:

npx hardhat run scripts/deploy.js --network localhost

When this completes successfully, you should have the addresses printed out to the console for your smart contract deployments.

Take those values and update the configuration in config.js:

export const nftmarketaddress = "market-contract-address"
export const nftaddress = "nft-contract-address"

Running the app

Now, we should be able to run the app.

To do so, open the terminal and run the following command:

npm run dev

Building the UI

Fetching NFTs

The first piece of functionality we'll implement will be fetching NFTs from the marketplace and rendering them to the UI.

To do so, open pages/index.js and update the loadNFTs function with the following:

async function loadNFTs() {
  const provider = new ethers.providers.JsonRpcProvider()
  const tokenContract = new ethers.Contract(nftaddress, NFT.abi, provider)
  const marketContract = new ethers.Contract(nftmarketaddress, Market.abi, provider)
  const data = await marketContract.fetchMarketItems()
  
  const items = await Promise.all(data.map(async i => {
    const tokenUri = await tokenContract.tokenURI(i.tokenId)
    const meta = await axios.get(tokenUri)
    let price = web3.utils.fromWei(i.price.toString(), 'ether');
    let item = {
      price,
      tokenId: i.tokenId.toNumber(),
      seller: i.seller,
      owner: i.owner,
      image: meta.data.image,
    }
    return item
  }))
  setNfts(items)
  setLoaded('loaded') 
}

The loadNFTs function calls the fetchMarketItems function in our smart contract and returns all unsold NFTs.

We then map over each NFT to transform the response into something more readable for the user interface.

Creating an NFT and placing it for sale

Next, let's create the function for minting the NFT and putting it for sale in the market.

To do so, open pages/create-item.js and update the createSale function with the following code:

async function createSale(url) {
  const web3Modal = new Web3Modal({
    network: "mainnet",
    cacheProvider: true,
  });
  const connection = await web3Modal.connect()
  const provider = new ethers.providers.Web3Provider(connection)    
  const signer = provider.getSigner()
  
  let contract = new ethers.Contract(nftaddress, NFT.abi, signer)
  let transaction = await contract.createToken(url)
  let tx = await transaction.wait()
  let event = tx.events[0]
  let value = event.args[2]
  let tokenId = value.toNumber()
  const price = web3.utils.toWei(formInput.price, 'ether')

  contract = new ethers.Contract(nftmarketaddress, Market.abi, signer)
  transaction = await contract.createMarketItem(nftaddress, tokenId, price)
  await transaction.wait()
  router.push('/')
}

This function writes two transactions to the network:

createToken mints the new token.

createMarketItem places the item for sale.

Once the item has been crated, we redict the user back to the main page.

Allowing a user to purchase an NFT

Next, let's create the function for allowing a user to purchase an NFT.

To do so, open pages/index.js and update the buyNft function with the following code:

async function buyNft(nft) {
  const web3Modal = new Web3Modal({
    network: "mainnet",
    cacheProvider: true,
  });
  const connection = await web3Modal.connect()
  const provider = new ethers.providers.Web3Provider(connection)
  const signer = provider.getSigner()
  const contract = new ethers.Contract(nftmarketaddress, Market.abi, signer)
  
  const price = web3.utils.toWei(nft.price.toString(), 'ether');
  
  const transaction = await contract.createMarketSale(nftaddress, nft.tokenId, {
    value: price
  })
  await transaction.wait()
  loadNFTs()
}

This function writes the createMarketSale to the network, allowing the user to transfer the amount from their wallet to the seller's wallet.

Allowing a user to view their own NFTs

The last piece of functionality we want to implement is to give users the ability to view the NFTs they have purchased. To do so, we'll be calling the fetchMyNFTs function from the smart contract.

Open pages/my-nfts.js and update the loadNFTs function with the following:

async function loadNFTs() {
  const web3Modal = new Web3Modal({
    network: "mainnet",
    cacheProvider: true,
  });
  const connection = await web3Modal.connect()
  const provider = new ethers.providers.Web3Provider(connection)
  const signer = provider.getSigner()
    
  const marketContract = new ethers.Contract(nftmarketaddress, Market.abi, signer)
  const tokenContract = new ethers.Contract(nftaddress, NFT.abi, provider)
  const data = await marketContract.fetchMyNFTs()
  
  const items = await Promise.all(data.map(async i => {
    const tokenUri = await tokenContract.tokenURI(i.tokenId)
    const meta = await axios.get(tokenUri)
    let price = web3.utils.fromWei(i.price.toString(), 'ether');
    let item = {
      price,
      tokenId: i.tokenId.toNumber(),
      seller: i.seller,
      owner: i.owner,
      image: meta.data.image,
    }
    return item
  }))

  setNfts(items)
  setLoaded('loaded') 
}

Enabling listing fees

Next, we want the operator of the marketplace to collect listing fees. We can add this functionality with only a few lines of code.

First, open the NFTMarket.sol contract located in the contracts directory.

Here, we will set a listing price that you want to be using. We will also, create a variable that we can use to store the owner of the contract.

Add the following lines of code below the _itemsSold variable initialization:

address payable owner;
uint256 listingPrice = 0.01 ether;

Next, create a constructor to store the contract owner's address:

constructor() {
  owner = payable(msg.sender);
}

In the createMarketItem function, set a check to make sure that the listing fee has been passed into the transaction:

require(price > 0, "Price must be at least 1 wei"); // below this line 👇
require(msg.value == listingPrice, "Price must be equal to listing price");

Finally, in the createMarketSale function, send the listingPrice value to the contract owner once the sale is completed. This can go at the end of the function:

payable(owner).transfer(listingPrice);

Next, in the client-side code, open pages/create-item.js and add the payment value to be sent along with the transaction in the createSale function:

// above code omitted
const listingPrice = web3.utils.toWei('0.01', 'ether')

contract = new ethers.Contract(nftmarketaddress, Market.abi, signer)
transaction = await contract.createMarketItem(nftaddress, tokenId, price, { value: listingPrice })
// below code omitted

Conclusion

The project should now be complete. You should be able to create, view, and purchase NFTs from the marketplace.

To view a completed version of the project, check out the code located in the marketplace-complete folder.

More Repositories

1

awesome-aws-amplify

Curated list of AWS Amplify Resources
1,782
star
2

polygon-ethereum-nextjs-marketplace

A full stack digital marketplace running on Ethereum with Polygon & Next.js
JavaScript
1,303
star
3

full-stack-ethereum

Building full stack apps with Solidity, Ethers.js, Hardhat, and The Graph
TypeScript
802
star
4

react-native-ai

Full stack framework for building cross-platform mobile AI apps
TypeScript
794
star
5

semantic-search-nextjs-pinecone-langchain-chatgpt

Embeds text files into vectors, stores them on Pinecone, and enables semantic search using GPT3 and Langchain in a Next.js UI
TypeScript
739
star
6

awesome-aws-appsync

Curated list of AWS AppSync Resources
625
star
7

gpt-travel-advisor

reference architecture for building a travel application with GPT3
TypeScript
543
star
8

foundry-cheatsheet

522
star
9

complete-guide-to-full-stack-solana-development

Code examples for the blog post titled The Complete Guide to Full Stack Solana Development with React, Anchor, Rust, and Phantom
JavaScript
474
star
10

dynamodb-documentclient-cheat-sheet

DynamoDB JavaScript DocumentClient cheat sheet
443
star
11

full-stack-web3

A full stack web3 on-chain blog and CMS
JavaScript
420
star
12

next.js-amplify-workshop

AWS Amplify Next.js workshop
JavaScript
360
star
13

gatsby-auth-starter-aws-amplify

Starter Project with Authentication with Gatsby & AWS Amplify
JavaScript
320
star
14

gpt-fine-tuning-with-nodejs

GPT Fine-Tuning using Node.js - an easy to use starter project
JavaScript
250
star
15

full-stack-serverless-code

Code examples for my book Full Stack Serverless with O'Reilly Publications
JavaScript
244
star
16

openai-functions-god-app

TypeScript
240
star
17

heard

React Native Enterprise Social Messaging App
JavaScript
236
star
18

aws-appsync-react-workshop

Building real-time offline-ready Applications with React, GraphQL & AWS AppSync
JavaScript
228
star
19

nextjs-chatgpt-plugin-starter

ChatGPT plugin starter project using Next.js
TypeScript
209
star
20

micro-frontend-example

Building Micro Frontends with React, Vue, and Single-spa
JavaScript
207
star
21

amplify-photo-sharing-workshop

Building full-stack cloud apps with AWS Amplify and React
JavaScript
197
star
22

chicken-tikka-masala-recipe

Nader's chicken tikka masala recipe
PHP
193
star
23

decentralized-identity-example

An authentication system built with Ceramic & self.id
JavaScript
190
star
24

aws-amplify-workshop-react

Building Serverless React Applications with AWS Amplify
172
star
25

building-a-subgraph-workshop

In this workshop you'll learn how to build an NFT Subgraph using any smart contract or smart contracts.
TypeScript
165
star
26

graphql-recipes

A list of GraphQL recipes that, when used with the Amplify CLI, will deploy an entire AWS AppSync GraphQL backend.
158
star
27

next.js-cdk-amplify-workshop

Full stack serverless workshop with Next.js, CDK, and AWS Amplify
JavaScript
157
star
28

supabase-next.js

Full stack app built with Supabase and Next.js
JavaScript
152
star
29

titter

Decentralized Twitter prototype built with Polygon, GraphQL, Next.js, Ceramic, Arweave, and Bundlr
JavaScript
152
star
30

supabase-nextjs-auth

Example project implementing authentication, authorization, and routing with Next.js and Supabase
JavaScript
151
star
31

react-native-in-action

React Native in Action, written for Manning Publications
146
star
32

prompt-engineering-for-javascript-developers

Notes summarized from ChatGPT Prompt Engineering for Developers by DeepLearning.ai
145
star
33

write-with-me

Real-time Collaborative Markdown Editor
JavaScript
144
star
34

foundry-workshop

Building and testing smart contracts with Foundry
Solidity
144
star
35

aws-amplify-workshop-react-native

Building Cloud-enabled Mobile Applications with React Native & AWS Amplify
JavaScript
139
star
36

lens-protocol-frontend

Example of a basic front end built on Lens Protocol
JavaScript
136
star
37

cdk-graphql-backend

A real-time GraphQL API deployed with CDK using AWS AppSync, AWS Lambda, and DynamoDB
TypeScript
131
star
38

create-new-cli

Create your own CLI using a series of simple commands.
JavaScript
128
star
39

perma

Perma is a web3 prototype of permanent video storage and viewing using Next.js, Arweave, and Bundlr.
JavaScript
120
star
40

appsync-graphql-real-time-canvas

Collaborative real-time canvas built with GraphQL, AWS AppSync, & React Canvas Draw
JavaScript
119
star
41

amplify-auth-demo

Demo of OAuth + Username / Password authentication in AWS Amplify
JavaScript
111
star
42

hype-beats

Real-time Collaborative Beatbox with React & GraphQL
JavaScript
111
star
43

next.js-authentication-aws

This project deploys a Next.js project to AWS with comprehensive authentication enabled
JavaScript
104
star
44

this-or-that

This or that - Real-time atomic voting app built with AWS Amplify
CSS
98
star
45

react-native-deep-linking

Deep Linking set up in a React Native App
Objective-C
96
star
46

beginning-webpack

This repository goes along with the medium post titled "Beginner's guide to Webpack"
JavaScript
95
star
47

react-native-bootcamp

React Native Bootcamp Materials for TylerMcginnis.com
94
star
48

react-native-mobx-list-app

React Native + Mobx List Application
JavaScript
91
star
49

appsync-auth-and-unauth

How to allow both authenticated & unauthenticated access to an API
JavaScript
91
star
50

aws-amplify-workshop-web

Building web applications with React & AWS Amplify
JavaScript
90
star
51

full-stack-ethereum-workshop

Building full stack dapps on the EVM with Hardhat, React, and Ethers.js
HTML
89
star
52

sign-in-with-ethereum-authentication-flow

Example implementation of how to implement Sign In with Ethereum
JavaScript
85
star
53

react-notes

React notes tutorial
JavaScript
84
star
54

vue-graphql-appsync

Vue example using GraphQL with AWS AppSync
JavaScript
81
star
55

lens-pwa

Lens PWA
TypeScript
80
star
56

amplify-datastore-example

Example of basic app using Amplify DataStore
JavaScript
78
star
57

custom-nft-subgraph-workshop

78
star
58

lens-shadcn

Example application combining Lens Protocol, WalletConnect, Next.js, and ShadCN
TypeScript
78
star
59

amplify-with-cdk

An example project showing how to mix CDK with AWS Amplify
TypeScript
77
star
60

react-aws-live-streaming

This project shows how to implement a live-streaming platform using AWS and React
JavaScript
73
star
61

react-native-navigation-v2

Up and running with React Native Navigation - V2 - by Wix
JavaScript
73
star
62

bored-ape-yacht-club-api-and-subgraph

Graph Protocol Subgraph / API for querying Bored Ape Yacht Club NFT data with full text search
TypeScript
70
star
63

react-appsync-graphql-recipe-app

Example application using React + AWS AppSync + GraphQL
JavaScript
70
star
64

react-amplify-appsync-files-s3

An example project showing how to upload and download public and private images in GraphQL using AppSync and S3
JavaScript
70
star
65

react-strict-dom-example

JavaScript
69
star
66

full-stack-react-native-appsync-workshop

Building Full Stack GraphQL Applications with React Native & AWS AppSync
JavaScript
67
star
67

speakerchat

SpeakerChat - Real-time Event Q&A Platform with Markdown Support
JavaScript
66
star
68

react-p2p-messaging

A real-time peer-to-peer messaging app built with React & Gun.js
JavaScript
65
star
69

graphql-suspense

Lightweight component that allows you to interact with a GraphQL API using React Suspense
JavaScript
65
star
70

nuxt-supabase-full-multi-user-blog

Build a mult-user blogging app with Supabase and Nuxt.js
Vue
65
star
71

archive-forever

HTML
63
star
72

next.js-tailwind-authentication

A Next.js authentication starter built with Tailwind and AWS Amplify
JavaScript
63
star
73

near-subgraph-workshop

Building a NEAR NFT API with The Graph
60
star
74

react-authentication-in-depth

Example of User Authentication using React with React Router and AWS Amplify
JavaScript
60
star
75

graphql-api-cdk-serverless-postgres

TypeScript
59
star
76

curious-cases-of-graphql

Code and examples from my talk - Curious Cases of GraphQL
57
star
77

gasless-transactions-example

Example of Gasless Transactions with Biconomy
JavaScript
57
star
78

react-chatbots

Building Chatbots with React, Amazon Lex, AWS Lambda, & AWS Amplify
JavaScript
57
star
79

xmtp-chat-app-nextjs

Real-time encrypted chat, built with XMTP and Next.js
TypeScript
57
star
80

react-native-lens-example

Example app built with React Native Lens UI Kit
JavaScript
55
star
81

lens-protocol-workshop

Introduction to web3 social media with Next.js and Lens Protocol
TypeScript
54
star
82

zora-nextjs-app

Example Full Stack App built with Next.js, Zora, Tailwind, and The Graph
TypeScript
54
star
83

draw-together

TypeScript
53
star
84

terminal-portfolio

TypeScript
51
star
85

arweave-workshop

JavaScript
50
star
86

lens-gated-publications

Example application implementing gated Lens posts, encryption, and decryption
JavaScript
49
star
87

graphql-search

Implementing Search in GraphQL using AWS AppSync & React Apollo
JavaScript
49
star
88

basic-amplify-storage-example

A basic example app showing how to add storage with Amazon S3
JavaScript
49
star
89

production-ready-vue-authentication

How to implement a real user authentication flow in Vue with Vue Router & AWS Amplify.
Vue
48
star
90

build-an-authenticated-api-with-cdk

Workshop - Build an authenticated CDK back end
TypeScript
48
star
91

real-time-image-tracking

Real-time image tracking with React, GraphQL, and AWS AppSync
JavaScript
48
star
92

appsync-lambda-ai

Demo of using a GraphQL resolver to hit a lambda function, then hit a few AI services, and return the response.
JavaScript
47
star
93

appsync-react-native-with-user-authorization

End to end React Native + AWS AppSync GraphQL application with queries, mutations, subscriptions, & user authentication & authorization
JavaScript
47
star
94

openzeppelin-nft-api

Building NFT APIs with OpenZeppelin and The Graph
46
star
95

cryptocoven-api

Cryptocoven Graph API
TypeScript
46
star
96

transilator

Text translation and synthesization Chrome plugin
JavaScript
46
star
97

xp-mobile-account-abstraction

TypeScript
45
star
98

react-native-navigator-experimental-redux

React Native Navigator Experimental with Redux
JavaScript
45
star
99

next.js-amplify-datastore

An example app using Amplify DataStore with Next.js for static site generation, pre-rendering, and SSR
JavaScript
45
star
100

full-stack-warp-arweave

JavaScript
44
star