• Stars
    star
    175
  • Rank 218,059 (Top 5 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Start a data science project with modern tools

Cookiecutter Modern Data Science

Cookiecutter template for starting a Data Science project with modern, fast Python tools.

Features

Quickstart

Install the latest Cookiecutter and Pipenv:

pip install -U pipenv cookiecutter

Generate the project:

cookiecutter gh:crmne/cookiecutter-modern-datascience

Get inside the project:

cd <repo_name>
pipenv shell  # activates virtualenv

(Optional) Start Weights & Biases locally, if you don't want to use the cloud/on-premise version:

wandb local

Start working:

jupyter-lab

Directory structure

This is our your new project will look like:

โ”œโ”€โ”€ .gitignore                <- GitHub's excellent Python .gitignore customized for this project
โ”œโ”€โ”€ LICENSE                   <- Your project's license.
โ”œโ”€โ”€ Pipfile                   <- The Pipfile for reproducing the analysis environment
โ”œโ”€โ”€ README.md                 <- The top-level README for developers using this project.
โ”‚
โ”œโ”€โ”€ data
โ”‚   โ”œโ”€โ”€ 0_raw                 <- The original, immutable data dump.
โ”‚   โ”œโ”€โ”€ 0_external            <- Data from third party sources.
โ”‚   โ”œโ”€โ”€ 1_interim             <- Intermediate data that has been transformed.
โ”‚   โ””โ”€โ”€ 2_final               <- The final, canonical data sets for modeling.
โ”‚
โ”œโ”€โ”€ docs                      <- GitHub pages website
โ”‚   โ”œโ”€โ”€ data_dictionaries     <- Data dictionaries
โ”‚   โ””โ”€โ”€ references            <- Papers, manuals, and all other explanatory materials.
โ”‚
โ”œโ”€โ”€ notebooks                 <- Jupyter notebooks. Naming convention is a number (for ordering),
โ”‚                                the creator's initials, and a short `_` delimited description, e.g.
โ”‚                                `01_cp_exploratory_data_analysis.ipynb`.
โ”‚
โ”œโ”€โ”€ output
โ”‚   โ”œโ”€โ”€ features              <- Fitted and serialized features
โ”‚   โ”œโ”€โ”€ models                <- Trained and serialized models, model predictions, or model summaries
โ”‚   โ””โ”€โ”€ reports               <- Generated analyses as HTML, PDF, LaTeX, etc.
โ”‚       โ””โ”€โ”€ figures           <- Generated graphics and figures to be used in reporting
โ”‚
โ”œโ”€โ”€ pipelines                 <- Pipelines and data workflows.
โ”‚   โ”œโ”€โ”€ Pipfile               <- The Pipfile for reproducing the pipelines environment
โ”‚   โ”œโ”€โ”€ pipelines.py          <- The CLI entry point for all the pipelines
โ”‚   โ”œโ”€โ”€ <repo_name>           <- Code for the various steps of the pipelines
โ”‚   โ”‚   โ”œโ”€โ”€  __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ etl.py            <- Download, generate, and process data
โ”‚   โ”‚   โ”œโ”€โ”€ visualize.py      <- Create exploratory and results oriented visualizations
โ”‚   โ”‚   โ”œโ”€โ”€ features.py       <- Turn raw data into features for modeling
โ”‚   โ”‚   โ””โ”€โ”€ train.py          <- Train and evaluate models
โ”‚   โ””โ”€โ”€ tests
โ”‚       โ”œโ”€โ”€ fixtures          <- Where to put example inputs and outputs
โ”‚       โ”‚   โ”œโ”€โ”€ input.json    <- Test input data
โ”‚       โ”‚   โ””โ”€โ”€ output.json   <- Test output data
โ”‚       โ””โ”€โ”€ test_pipelines.py <- Integration tests for the HTTP API
โ”‚
โ””โ”€โ”€ serve                     <- HTTP API for serving predictions
    โ”œโ”€โ”€ Dockerfile            <- Dockerfile for HTTP API
    โ”œโ”€โ”€ Pipfile               <- The Pipfile for reproducing the serving environment
    โ”œโ”€โ”€ app.py                <- The entry point of the HTTP API
    โ””โ”€โ”€ tests
        โ”œโ”€โ”€ fixtures          <- Where to put example inputs and outputs
        โ”‚   โ”œโ”€โ”€ input.json    <- Test input data
        โ”‚   โ””โ”€โ”€ output.json   <- Test output data
        โ””โ”€โ”€ test_app.py       <- Integration tests for the HTTP API

More Repositories

1

Genretron

Music Genre Classification using Deep Learning
Python
28
star
2

xcode-default.tmtheme

Xcode Default-lookalike theme for TextMate
10
star
3

mlflow-tracking

MLFLow Tracking Server containerized
Python
8
star
4

googlescholarscraper

A scraper for Google Scholar, written in Python
Python
6
star
5

inconsolata

the awesome Inconsolata font, correctly dimensioned
5
star
6

jobman

My fork of the LISA lab's concurrent job launcher (original repo at git://git.assembla.com/jobman.git)
Python
4
star
7

cluster-headache-tracker

Cluster Headache Tracker is a free, open-source web application designed to help individuals suffering from cluster headaches track and manage their condition. By providing detailed logging, visual insights, and easy sharing with healthcare providers, this tool aims to improve the understanding and treatment of cluster headaches.
Ruby
3
star
8

lana

LArge-scale Network Analyzer
C++
2
star
9

UDPLoadBalancer

A QoS system for VoIP applications in wireless multi-homing environments (simulated).
C
2
star
10

appunti-cps

Appunti di Calcolo delle Probabilitร  e Statistica
Ruby
2
star
11

rfid_occupancy_tracker

An occupancy tracker for the RC522 and the Raspberry Pi
Python
1
star
12

filestream

Asynchronous multipart form upload with progress in Node.js
JavaScript
1
star
13

gdata-objectivec-client

A Mac OS X framework and source code that make it easy to access data through Google Data APIs (SVN Mirror)
Objective-C
1
star
14

vim-commonkads

Vim syntax and UltiSnips snippets for CommonKADS's Knowledge-Model Language
Vim Script
1
star
15

dvc-workshop

All credits goes to Iterative.ai and their blog post https://blog.dataversioncontrol.com/data-version-control-tutorial-9146715eda46
Python
1
star
16

boost-code-highlighter.safariextension

Highlights code fragments on boost.org
JavaScript
1
star
17

vimrc

My ~/.vim directory
Vim Script
1
star