• Stars
    star
    167
  • Rank 226,635 (Top 5 %)
  • Language
    Python
  • Created over 12 years ago
  • Updated over 9 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python implementation of 'Density Based Spatial Clustering of Applications with Noise'

#dbscan

Python implementation of 'Density Based Spatial Clustering of Applications with Noise'

Setup

python setup.py install

Usage

import dbscan
dbscan.dbscan(m, eps, min_points)

Documentation

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
| dbscan.dbscan: (m, eps, min_points)
| Implementation of Density Based Spatial Clustering of Applications with Noise
|    See https://en.wikipedia.org/wiki/DBSCAN
| 
|    scikit-learn probably has a better implementation
|    Uses Euclidean Distance as the measure
| 
| Inputs:
| m - A matrix whose columns are feature vectors
| eps - Maximum distance two points can be to be regionally related
| min_points - The minimum number of points to make a cluster
| 
| Outputs:
| An array with either a cluster id number or dbscan.NOISE (None) for each 
| column vector in m.
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜