• Stars
    star
    10,628
  • Rank 3,221 (Top 0.07 %)
  • Language
    Jupyter Notebook
  • License
    Apache License 2.0
  • Created about 2 years ago
  • Updated about 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

AISystem 主要是指AI系统,包括AI芯片、AI编译器、AI推理和训练框架等AI全栈底层技术

AI System & AI Infra

Continuous Integration Build Docker Image

文字课程内容正在一节节补充更新,尽可能抽空继续更新正在 AISys ,希望您多多鼓励和参与进来!!!

文字课程开源在 AISys,系列视频托管B站油管,PPT开源在github,欢迎取用!!!

非常希望您也参与到这个开源项目中,B站给ZOMI留言哦!

欢迎大家使用的过程中发现bug或者勘误直接提交代码PR到开源社区哦!

项目背景

这个开源项目英文名字叫做 Deep Learning System 或者 AI System(AISys),中文名字叫做 深度学习系统 或者 AI系统

本开源项目主要是跟大家一起探讨和学习人工智能、深度学习的系统设计,而整个系统是围绕着 ZOMI 在工作当中所积累、梳理、构建 AI 系统全栈的内容。希望跟所有关注 AI 开源项目的好朋友一起探讨研究,共同促进学习讨论。

AI系统全栈

课程内容大纲

课程主要包括以下六大模块:

第一部分,AI基础知识和AI系统的全栈概述的AI系统概述,以及深度学习系统的系统性设计和方法论,主要是整体了解AI训练和推理全栈的体系结构内容。

第二部分,硬核篇介绍AI芯片概况,这里就很硬核了,从芯片基础到AI芯片的范围都会涉及,芯片设计需要考虑上面AI框架的前端、后端编译,而不是停留在天天喊着吊打英伟达,被现实打趴。

第三部分,进阶篇介绍AI编译器原理,将站在系统设计的角度,思考在设计现代机器学习系统中需要考虑的编译器问题,特别是中间表达乃至后端优化。

第四部分,实际应用推理系统与引擎,讲了太多原理身体太虚容易消化不良,还是得回归到业务本质,让行业、企业能够真正应用起来,而推理系统涉及一些核心算法和注意的事情也分享下。

第五部分,介绍AI框架核心技术,首先介绍任何一个AI框架都离不开的自动微分,通过自动微分功能后就会产生表示神经网络的图和算子,然后介绍AI框架前端的优化,还有最近很火的大模型分布式训练在AI框架中的关键技术。

第六部分,汇总篇介绍大模型与AI系统,大模型是基于AI集群的全栈软硬件性能优化,通过最小的每一块AI芯片组成的AI集群,编译器使能到上层的AI框架,训练过程需要分布式并行、集群通信等算法支持,而且在大模型领域最近持续演进如智能体等新技术。

课程设立目的

本课程主要为本科生高年级、硕博研究生、AI系统从业者设计,帮助大家:

  1. 完整了解AI的计算机系统架构,并通过实际问题和案例,来了解AI完整生命周期下的系统设计。

  2. 介绍前沿系统架构和AI相结合的研究工作,了解主流框架、平台和工具来了解AI系统。

先修课程: C++/Python,计算机体系结构,人工智能基础

课程部分

编号 名称 具体内容
1 AI 系统 算法、框架、体系结构的结合,形成AI系统
编号 名称 具体内容
1 AI 计算体系 神经网络等AI技术的计算模式和计算体系架构
2 AI 芯片基础 CPU、GPU、NPU等芯片体系架构基础原理
3 图形处理器 GPU GPU的基本原理,英伟达GPU的架构发展
4 英伟达 GPU 详解 英伟达GPU的TensorCore、NVLink深度剖析
5 国外 AI 处理器 谷歌、特斯拉等专用AI处理器核心原理
6 国内 AI 处理器 寒武纪、燧原科技等专用AI处理器核心原理
7 AI 芯片黄金10年 对 AI 芯片的编程模式和发展进行总结
编号 名称 具体内容
1 传统编译器 传统编译器GCC与LLVM,LLVM详细架构
2 AI 编译器 AI编译器发展与架构定义,未来挑战与思考
3 前端优化 AI编译器的前端优化(算子融合、内存优化等)
4 后端优化 AI编译器的后端优化(Kernel优化、AutoTuning)
5 多面体 待更ing...
6 PyTorch2.0 PyTorch2.0最重要的新特性:编译技术栈
编号 名称 具体内容
1 推理系统 推理系统整体介绍,推理引擎架构梳理
2 轻量网络 轻量化主干网络,MobileNet等SOTA模型介绍
3 模型压缩 模型压缩4件套,量化、蒸馏、剪枝和二值化
4 转换&优化 AI框架训练后模型进行转换,并对计算图优化
5 Kernel优化 Kernel层、算子层优化,对算子、内存、调度优化
编号 名称 具体内容
1 AI框架基础 AI框架的作用、发展、编程范式
2 自动微分 自动微分的实现方式和原理
3 计算图 计算图的概念,图优化、图执行、控制流表达
编号 名称 具体内容
1 大模型全流程 大模型整体架构和大模型全流程介绍
2 AI 集群简介 AI集群服务器整体组成相关技术初体验
3 AI 集群存储 数据存储在AI集群中,具体的存储优化方案
4 AI 集群通信 更新中
5 数据处理 更新中
6 大模型算法 更新中
7 大模型训练 更新中
8 分布式并行 更新中
9 大模型微调 更新中
10 大模型验证 更新中
11 大模型推理 更新中
12 AI Agent AI Agent 智能体,通过大模型走向GAI

知识清单

知识清单

备注

这个仓已经到达疯狂的10G啦(ZOMI把所有制作过程、高清图片都原封不动提供),如果你要git clone会非常的慢,因此建议优先到 Releases · chenzomi12/DeepLearningSystem 来下载你需要的内容。