• Stars
    star
    4,379
  • Rank 9,806 (Top 0.2 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created almost 4 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation of AnimeGANv2

PyTorch Implementation of AnimeGANv2

Updates

Basic Usage

Inference

python test.py --input_dir [image_folder_path] --device [cpu/cuda]

Torch Hub Usage

You can load the model via torch.hub:

import torch
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator").eval()
out = model(img_tensor)  # BCHW tensor

Currently, the following pretrained shorthands are available:

model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="celeba_distill")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v2")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="paprika")

You can also load the face2paint util function:

from PIL import Image

face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", size=512)

img = Image.open(...).convert("RGB")
out = face2paint(model, img)

More details about torch.hub is in the torch docs

Weight Conversion from the Original Repo (Tensorflow)

  1. Install the original repo's dependencies: python 3.6, tensorflow 1.15.0-gpu
  2. Install torch >= 1.7.1
  3. Clone the original repo & run
git clone https://github.com/TachibanaYoshino/AnimeGANv2
python convert_weights.py
samples
Results from converted `Paprika` style model (input image, original tensorflow result, pytorch result from left to right)

     

Note: Results from converted weights slightly different due to the bilinear upsample issue

Additional Model Weights

Webtoon Face [ckpt]

samples

Trained on 256x256 face images. Distilled from webtoon face model with L2 + VGG + GAN Loss and CelebA-HQ images.

face_results  

Face Portrait v1 [ckpt]

samples

Trained on 512x512 face images.

Colab

samples

📺

sample

Face Portrait v2 [ckpt]

samples

Trained on 512x512 face images. Compared to v1, 🔻beautify 🔺robustness

Colab

face_portrait_v2_0

face_portrait_v2_1

🦑 🎮 🔥

face_portrait_v2_squid_game