• Stars
    star
    589
  • Rank 75,909 (Top 2 %)
  • Language
    Jupyter Notebook
  • Created about 6 years ago
  • Updated about 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Multi-label Classification with BERT; Fine Grained Sentiment Analysis from AI challenger

Introduction

With this repository, you will able to train Multi-label Classification with BERT,

Deploy BERT for online prediction.

You can also find the a short tutorial of how to use bert with chinese: BERT short chinese tutorial

You can find Introduction to fine grain sentiment from AI Challenger

Basic Ideas

Add something here.

Experiment on New Models

for more, check model/bert_cnn_fine_grain_model.py

Performance

Model TextCNN(No-pretrain) TextCNN(Pretrain-Finetuning) Bert(base_model_zh) Bert(base_model_zh,pre-train on corpus)
F1 Score 0.678 0.685 ADD A NUMBER HERE ADD A NUMBER HERE

Notice: F1 Score is reported on validation set

Usage

Bert for Multi-label Classificaiton [data for fine-tuning and pre-train]

export BERT_BASE_DIR=BERT_BASE_DIR/chinese_L-12_H-768_A-12
export TEXT_DIR=TEXT_DIR
nohup python run_classifier_multi_labels_bert.py   
  --task_name=sentiment_analysis   
  --do_train=true   
  --do_eval=true  
  --data_dir=$TEXT_DIR   
  --vocab_file=$BERT_BASE_DIR/vocab.txt   
  --bert_config_file=$BERT_BASE_DIR/bert_config.json  
  --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt   
  --max_seq_length=512   
  --train_batch_size=4   
  --learning_rate=2e-5   
  --num_train_epochs=3   
  --output_dir=./checkpoint_bert &

1.firstly, you need to download pre-trained model from google, and put to a folder(e.g.BERT_BASE_DIR)

chinese_L-12_H-768_A-12 from <a href='https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip'>bert</a>

2.secondly, you need to have training data(e.g. train.tsv) and validation data(e.g. dev.tsv), and put it under a

 folder(e.g.TEXT_DIR ). you can also download data from here <a href='https://pan.baidu.com/s/1ZS4dAdOIAe3DaHiwCDrLKw'>data to train bert for AI challenger-Sentiment Analysis</a>.
  
 it contains processed data you can run for both fine-tuning on sentiment analysis and pre-train with Bert. 
  
 it is generated by following this notebook step by step:
  
 preprocess_char.ipynb 
  
 you can generate data by yourself as long as data format is compatible with 
  
 processor SentimentAnalysisFineGrainProcessor(alias as sentiment_analysis); 


 data format:  label1,label2,label3\t here is sentence or sentences\t
 
 it only contains two columns, the first one is target(one or multi-labels), the second one is input strings.
  
 no need to tokenized.
 
 sample:"0_1,1_-2,2_-2,3_-2,4_1,5_-2,6_-2,7_-2,8_1,9_1,10_-2,11_-2,12_-2,13_-2,14_-2,15_1,16_-2,17_-2,18_0,19_-2 浦东五莲路站,老饭店福瑞轩属于上海的本帮菜,交通方便,最近又重新装修,来拨草了,饭店活动满188元送50元钱,环境干净,简单。朋友提前一天来预订包房也没有订到,只有大堂,五点半到店基本上每个台子都客满了,都是附近居民,每道冷菜量都比以前小,味道还可以,热菜烤茄子,炒河虾仁,脆皮鸭,照牌鸡,小牛排,手撕腊味花菜等每道菜都很入味好吃,会员价划算,服务员人手太少,服务态度好,要能团购更好。可以用支付宝方便"
 
 check sample data in ./BERT_BASE_DIR folder 

 for more detail, check create_model and SentimentAnalysisFineGrainProcessor from run_classifier.py 

Pre-train Bert model based on open-souced model, then do classification task

  1. generate raw data: [ADD SOMETHING HERE]

    take sure each line is a sentence. between each document there is a blank line.

    you can find generated data from zip file.

     use write_pre_train_doc() from preprocess_char.ipynb 
    
  2. generate data for pre-train stage using:

    export BERT_BASE_DIR=./BERT_BASE_DIR/chinese_L-12_H-768_A-12
    nohup python create_pretraining_data.py \
    --input_file=./PRE_TRAIN_DIR/bert_*_pretrain.txt \
    --output_file=./PRE_TRAIN_DIR/tf_examples.tfrecord \
    --vocab_file=$BERT_BASE_DIR/vocab.txt \
    --do_lower_case=True \
    --max_seq_length=512 \
    --max_predictions_per_seq=60 \
    --masked_lm_prob=0.15 \
    --random_seed=12345 \
    --dupe_factor=5 nohup_pre.out & 
    
  3. pre-train model with generated data:

    python run_pretraining.py

  4. fine-tuning

    python run_classifier.py

TextCNN

  1. download cache file of sentiment analysis(tokens are in word level)

  2. train the model:

    python train_cnn_fine_grain.py

 cache file of TextCNN model was generate by following steps from preprocess_word.ipynb. 
 
 it contains everything you need to run TextCNN.
 
 it include: processed train/validation/test set; vocabulary of word; a dict map label to index. 
 
 take train_valid_test_vocab_cache.pik and put it under folder of preprocess_word/
 
 raw data are also included in this zip file.

Pre-train TextCNN

  1. pre-train TextCNN with masked language model

    python train_cnn_lm.py

  2. fine-tuning for TextCNN

    python train_cnn_fine_grain.py

Deploy BERT for online prediction

with session and feed style you can easily deploy BERT.

online prediction with BERT, check more from here

Reference

  1. Bidirectional Encoder Representations from Transformers for Language Understanding

  2. google-research/bert

  3. pengshuang/AI-Comp

  4. AI Challenger 2018

  5. Convolutional Neural Networks for Sentence Classification

More Repositories

1

nlp_chinese_corpus

大规模中文自然语言处理语料 Large Scale Chinese Corpus for NLP
9,322
star
2

text_classification

all kinds of text classification models and more with deep learning
Python
7,806
star
3

albert_zh

A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS, 海量中文预训练ALBERT模型
Python
3,918
star
4

roberta_zh

RoBERTa中文预训练模型: RoBERTa for Chinese
Python
2,573
star
5

bert_language_understanding

Pre-training of Deep Bidirectional Transformers for Language Understanding: pre-train TextCNN
Python
960
star
6

nlu_sim

all kinds of baseline models for sentence similarity 句子对语义相似度模型
Python
296
star
7

ai_law

all kinds of baseline models for long text classificaiton( text categorization)
Python
276
star
8

xlnet_zh

中文预训练XLNet模型: Pre-Trained Chinese XLNet_Large
Python
228
star
9

multi-label_classification

transform multi-label classification as sentence pair task, with more training data and information
Python
178
star
10

slot_filling_intent_joint_model

attention based joint model for intent detection and slot filling
Python
177
star
11

bert_customized

bert with customized features
Python
25
star
12

deep_learning_by_andrew_ng_coursera

deep learning specialization by andrew ng though deeplearning.ai on coursera
HTML
23
star
13

machine_reading_comprehension

machine reading comprehension with deep learning
Python
20
star
14

machine_translation

Machine translation using deep learning with lstm,cnn,attention,beam search and so on.
Python
20
star
15

cs224d_DeepLearningForNLP

Deep Learning for Nature Language Processing at Standford
Python
13
star
16

name_entity_recognition

Name Entity Recognition with DNN
Python
10
star
17

dynamic_pointer_network

an implementation of Pointer Network using tensorflow
Python
9
star
18

machine_learning

machine learning applied to NLP without deep learning
Python
8
star
19

question_answering_with_context

models of question answering with context and it's application
4
star
20

MachineLearningNanoDegreeUdacity

Machine Learning Nano Degree at Udacity.com
HTML
4
star
21

cs229_MachineLearning_AndrewNg_Coursera

Machine Learning from Andrew Ng at coursera.org with Standford
Limbo
3
star
22

bert_original

just fork from bert, add some config files
Python
2
star
23

cs231n_Convolutional-Neural-Networks-for-Visual-Recognition

Convolutional Net for Computer Recognition at Standford: My Own Code
Jupyter Notebook
2
star
24

deep_learning_book_notes

The key points of deep learning book, write as notes.
1
star