• Stars
    star
    228
  • Rank 175,267 (Top 4 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated about 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

中文预训练XLNet模型: Pre-Trained Chinese XLNet_Large

XLNet for Chinese, TensorFlow & PyTorch

XLNet中文预训练模型

XLNet是CMU和谷歌大脑在2019年6月份,提出的一个新的预训练模型。在多个任务的性能超越Bert。它是在保留自回归语言模型(Autoregressive Language Modeling)的形式下,

结合了自编码语言模型(Autoencoding Language Modeling)的优势,提出了排列语言模型(Permutation Language Modeling)。并且它基于Transfomer-XL,

有更好的处理长文本的能力。

本项目参考[2]的工作,结合海量数据,训练了一个24层的中文XLNet_zh_Large模型,含3亿多参数。

训练数据和计算资源 Training Corpus & Training Details

训练数据,包括新闻、互动讨论、百科,超过30G原始文本,近100亿个中文字; 本项目与中文预训练RoBERTa模型的RoBERTa_zh项目,使用相同的训练数据。

使用Google TPU v3-256 训练2天得到;包含32个v3-8机器,每个v3-8机器包含128G的显存;训练了20万步,使用序列长度(sequence_length)512,批次(batch_size)为512。

注意事项 Notices

XLNet_zh_Large还没有完整测试,可能在你的任务中有极好的表现,也可能在部分任务中有糟糕的表现。我们预计既会有好消息,也有坏消息;但目前在句子对任务中(LCQMC任务)是坏消息。

提供您的测试对比 Performance

如果你使用本项目的中文预训练模型,请告诉你的测试对比效果:你可以直接发生pull request将你的任务中的测试对比添加到README.md中,或发在issue中;

你也可以加入中文预训练模型transformers讨论群(QQ:836811304),并把测试对比告知我们。

XLNet中文预训练模型-下载 Download Pre-trained XLNet, for Chinese tasks

XLNet_zh_Large, 百度网盘,或 Google drive,TensorFlow版本

暂时没有去掉adam参数,去掉后模型会变成1.3G左右。

XLNet_zh_Large_L-24_H-1024_A-16.zip 
  |- xlnet_model.ckpt    # 模型权重
  |- xlnet_model.index   # 模型meta信息
  |- xlnet_model.meta    # 模型index新
  |- xlnet_config.json: # 配置文件
  |- spiece.model:       # 词汇表

PyTorch版本,可使用类似的命名来转换,具体建pytorch_transformers项目:

python -u -m pytorch_transformers.convert_tf_checkpoint_to_pytorch --tf_checkpoint_path XLNet-zh-Large-PyTorch/ --bert_config_file XLNet-zh-Large-PyTorch/config.json --pytorch_dump_path XLNet-zh-Large-PyTorch/xlnet_zh_large_pytorch_model.bin

如何保留从左到右的方式预测(就像传统的语言模型一样),但还能利用下文的信息?

1.input_list:   [1, 2, 3, 4, 5, 6]
2.sampled_list: [2, 4, 6, 5, 3, 1]
3.array_2d:
                [[0. 1. 1. 1. 1. 1.]
                 [0. 0. 0. 0. 0. 0.]
                 [0. 1. 0. 1. 1. 1.]
                 [0. 1. 0. 0. 0. 0.]
                 [0. 1. 0. 1. 0. 1.]
                 [0. 1. 0. 1. 0. 0.]]

import numpy as np
import random
def xlnet_mask(input_list):
    """
    输入一个列表(如:[x1,x2,x3,x4]),采样到一个新的组合(如:[x3,x2,x4,x1])返回一个矩阵
    要实现的是让当前单词Xi只能看到这个新顺序中自己前面的单词
    即:对于序列[x3,x2,x4,x1]
        x2能看到x3;
        x4能看到x3,x2
        x1能看到x3,x2,x4
        x3什么也看不到
    看到在程序里,是1,看不到是0.
    :param input_list:
    :return: matrix
    e.g
    [[0,1,1,1],  # x1
     [0,0,1,0],  # x2
     [0,0,0,0],  # x3
     [0,1,1,0]]  # x4

    """
    print("1.input_list:",input_list)
    random.shuffle(input_list) # 打乱循序
    sampled_list=input_list
    print("2.sampled_list:",sampled_list)
    num_size=len(input_list)
    
    array_2d=np.zeros((num_size,num_size))
    for index,current_element in enumerate(sampled_list):
        previous_element_list=sampled_list[0:index] # 被采样的组合中当前元素中自己前面的单词
        for previous_element in previous_element_list:
            array_2d[current_element-1][previous_element-1]=1
    
    print("3.array_2d:\n",array_2d)
    return array_2d

input_list=[1,2,3,4,5,6]
array_2d=xlnet_mask(input_list)

效果测试与对比 Performance

请您报告并添加。

数据集或任务不限,包括XNLI、LCQMC、阅读理解数据集CMRC、CCF-Sentiment-Analysis等等。

模型加载(以Sentence Pair Matching即句子对任务,LCQMC为例)

预训练

1、生成tfrecords:

SAVE_DIR=gs://xlnet_zh/tf_records_xlnet
INPUT=gs://raw_text/data_2019_raw/*.txt 
nohup python -u data_utils.py \
    --bsz_per_host=32 \
    --num_core_per_host=8 \
    --seq_len=512 \
    --reuse_len=256 \
    --input_glob=${INPUT} \
    --save_dir=${SAVE_DIR} \
    --num_passes=20 \
    --bi_data=True \
    --sp_path=spiece.model \
    --mask_alpha=6 \
    --mask_beta=1 \
    --num_predict=85 \
    --uncased=False \
    --num_task=200 \
    --task=1 &

第一步假设你已经有了词汇表(本项目中的词汇表位于src/spiece.model);如果你需要建立生成自己的词汇表见下方,更多信息参考:SentencePiece

生成词汇表: spm_train
--input=gs://raw_text/data_2019_raw/*.txt
--model_prefix=sp10m.cased.v3
--vocab_size=32000
--character_coverage=0.99995
--model_type=unigram
--control_symbols=<cls>,<sep>,<pad>,<mask>,<eod>
--user_defined_symbols=<eop>,.,(,),",-,–,£,€
--shuffle_input_sentence
--input_sentence_size=200000000

2、训练模型:

DATA=gs://xlnet_zh/tf_records_xlnet/tfrecords/
MODEL_DIR=gs://xlnet_zh/xlnet_zh_large
TPU_NAME=xlnet-zh-large-v3-256 
TPU_ZONE=europe-west4-a
nohup python train.py \
    --record_info_dir=$DATA \
    --model_dir=$MODEL_DIR \
    --train_batch_size=512 \
    --num_hosts=32 \
    --num_core_per_host=8 \
    --seq_len=512 \
    --reuse_len=256 \
    --mem_len=384 \
    --perm_size=256 \
    --n_layer=24 \
    --d_model=1024 \
    --d_embed=1024 \
    --n_head=16 \
    --d_head=64 \
    --d_inner=4096 \
    --untie_r=True \
    --mask_alpha=6 \
    --mask_beta=1 \
    --num_predict=85 \
    --uncased=False \
    --train_steps=200000 \
    --save_steps=3000 \
    --warmup_steps=10000 \
    --max_save=30 \
    --weight_decay=0.01 \
    --adam_epsilon=1e-6 \
    --learning_rate=1e-5 \
    --dropout=0.1 \
    --dropatt=0.1 \
    --tpu=$TPU_NAME \
    --tpu_zone=$TPU_ZONE \
    --use_tpu=True \
    --track_mean=True &

fine-tuning(以LCQMC任务为例)

XLNET_DIR=gs://xlnet_zh/xlnet_zh_large
MODEL_DIR=gs://xlnet_zh/fine_tuning_test/lcqmc_01
DATA_DIR=gs://xlnet_zh/fine_tuning_test/lcqmc_01/lcqmc_tfrecords
RAW_DIR=gs://roberta_zh/compare_model_performance/lcqmc
TPU_NAME=grpc://03.06.08.09:8470
TPU_ZONE=us-central1-a
nohup python -u run_classifier.py \
    --spiece_model_file=./spiece.model \
    --model_config_path=${XLNET_DIR}/config.json \
    --init_checkpoint=${XLNET_DIR}/model.ckpt-192000 \
    --task_name=lcqmc \
    --do_train=True \
    --do_eval=True \
    --eval_all_ckpt=True \
    --uncased=False \
    --data_dir=${RAW_DIR} \
    --output_dir=${DATA_DIR} \
    --model_dir=${MODEL_DIR} \
    --train_batch_size=128 \
    --eval_batch_size=8 \
    --num_hosts=1 \
    --num_core_per_host=8 \
    --num_train_epochs=3 \
    --max_seq_length=128 \
    --learning_rate=2e-5 \
    --save_steps=1000 \
    --use_tpu=True \
    --tpu=${TPU_NAME} \
    --tpu_zone=${TPU_ZONE} >> xlnet_large_lcqmc_1.out &

注: TPU_NAME is dummy, you should change IP to real one

Learning Curve 学习曲线

Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC)

Reference

[1] XLNet: Generalized Autoregressive Pretraining for Language Understanding

[2] Chinese-PreTrained-XLNet

[3] XLNet:运行机制及和Bert的异同比较

More Repositories

1

nlp_chinese_corpus

大规模中文自然语言处理语料 Large Scale Chinese Corpus for NLP
9,322
star
2

text_classification

all kinds of text classification models and more with deep learning
Python
7,806
star
3

albert_zh

A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS, 海量中文预训练ALBERT模型
Python
3,918
star
4

roberta_zh

RoBERTa中文预训练模型: RoBERTa for Chinese
Python
2,573
star
5

bert_language_understanding

Pre-training of Deep Bidirectional Transformers for Language Understanding: pre-train TextCNN
Python
960
star
6

sentiment_analysis_fine_grain

Multi-label Classification with BERT; Fine Grained Sentiment Analysis from AI challenger
Jupyter Notebook
589
star
7

nlu_sim

all kinds of baseline models for sentence similarity 句子对语义相似度模型
Python
296
star
8

ai_law

all kinds of baseline models for long text classificaiton( text categorization)
Python
276
star
9

multi-label_classification

transform multi-label classification as sentence pair task, with more training data and information
Python
178
star
10

slot_filling_intent_joint_model

attention based joint model for intent detection and slot filling
Python
177
star
11

bert_customized

bert with customized features
Python
25
star
12

deep_learning_by_andrew_ng_coursera

deep learning specialization by andrew ng though deeplearning.ai on coursera
HTML
23
star
13

machine_reading_comprehension

machine reading comprehension with deep learning
Python
20
star
14

machine_translation

Machine translation using deep learning with lstm,cnn,attention,beam search and so on.
Python
20
star
15

cs224d_DeepLearningForNLP

Deep Learning for Nature Language Processing at Standford
Python
13
star
16

name_entity_recognition

Name Entity Recognition with DNN
Python
10
star
17

dynamic_pointer_network

an implementation of Pointer Network using tensorflow
Python
9
star
18

machine_learning

machine learning applied to NLP without deep learning
Python
8
star
19

question_answering_with_context

models of question answering with context and it's application
4
star
20

MachineLearningNanoDegreeUdacity

Machine Learning Nano Degree at Udacity.com
HTML
4
star
21

cs229_MachineLearning_AndrewNg_Coursera

Machine Learning from Andrew Ng at coursera.org with Standford
Limbo
3
star
22

bert_original

just fork from bert, add some config files
Python
2
star
23

cs231n_Convolutional-Neural-Networks-for-Visual-Recognition

Convolutional Net for Computer Recognition at Standford: My Own Code
Jupyter Notebook
2
star
24

deep_learning_book_notes

The key points of deep learning book, write as notes.
1
star