• Stars
    star
    183
  • Rank 210,154 (Top 5 %)
  • Language
    Jupyter Notebook
  • License
    BSD 2-Clause "Sim...
  • Created about 7 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

numsca is numpy for scala

"What I cannot create, I do not understand." - Richard Feynman.

Numsca: Numpy for Scala

Maven Central Build Status

Numsca is Numpy for Scala.

I invite you to have a look at this notebook, which explains in simple terms how you can implement a neural net framework with Numsca.

(If nbviewer barfs, then you can try this notebook)

Here's the famous neural network in 11 lines of Python, translated to Numsca:

import botkop.{numsca => ns}
val x = ns.array(0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1).reshape(4, 3)
val y = ns.array(0, 1, 1, 0).T
val w0 = 2 * ns.rand(3, 4) - 1
val w1 = 2 * ns.rand(4, 1) - 1
for (j <- 0 until 60000) {
  val l1 = 1 / (1 + ns.exp(-ns.dot(x, w0)))
  val l2 = 1 / (1 + ns.exp(-ns.dot(l1, w1)))
  val l2Delta = (y - l2) * (l2 * (1 - l2))
  val l1Delta = l2Delta.dot(w1.T) * (l1 * (1 - l1))
  w1 += l1.T.dot(l2Delta)
  w0 += x.T.dot(l1Delta)
}

Another example: a Scala translation of Andrej Karpathy's 'Minimal character-level language model with a Vanilla Recurrent Neural Network'. (Compare with Andrej Karpathy's original post.)

Also have a look at Scorch, a neural net framework in the spirit of PyTorch, which uses Numsca.

Why?

I love Scala. I teach myself deep learning. Everything in deep learning is written in Python. This library helps me to quickly translate Python and Numpy code to my favorite language.

I hope you find it useful.

Pull requests welcome.

Disclaimer

This is far from an exhaustive copy of Numpy's functionality. I'm adding functionality as I go. That being said, I think many of the most interesting aspects of Numpy like slicing, broadcasting and indexing have been successfully implemented.

Under the hood

Numsca piggybacks on Nd4j. Thanks, people!

Dependency

Add this to build.sbt:

For Scala 2.13:

libraryDependencies += "be.botkop" %% "numsca" % "0.1.7"

For Scala 2.11 and 2.12:

libraryDependencies += "be.botkop" %% "numsca" % "0.1.5"

Importing Numsca

import botkop.{numsca => ns}
import ns.Tensor

Creating a Tensor

scala> Tensor(3, 2, 1, 0)
[3.00,  2.00,  1.00,  0.00]

scala> ns.zeros(3, 3)
[[0.00,  0.00,  0.00],
 [0.00,  0.00,  0.00],
 [0.00,  0.00,  0.00]]

scala> ns.ones(3, 2)
[[1.00,  1.00],
 [1.00,  1.00],
 [1.00,  1.00]]
 
scala> val ta: Tensor = ns.arange(10)
[0.00,  1.00,  2.00,  3.00,  4.00,  5.00,  6.00,  7.00,  8.00,  9.00]

scala> val tb: Tensor = ns.reshape(ns.arange(9), 3, 3)
[[0.00,  1.00,  2.00],
 [3.00,  4.00,  5.00],
 [6.00,  7.00,  8.00]]
 
 scala> val tc: Tensor = ns.reshape(ns.arange(2 * 3 * 4), 2, 3, 4)
 [[[0.00,  1.00,  2.00,  3.00],
   [4.00,  5.00,  6.00,  7.00],
   [8.00,  9.00,  10.00,  11.00]],
 
  [[12.00,  13.00,  14.00,  15.00],
   [16.00,  17.00,  18.00,  19.00],
   [20.00,  21.00,  22.00,  23.00]]]

Access

Single element

scala> ta(0)
res10: botkop.numsca.Tensor = 0.00

scala> tc(0, 1, 2)
res14: botkop.numsca.Tensor = 6.00

Get the value of a single element Tensor:

scala> ta(0).squeeze()
res11: Double = 0.0

Slice

scala> tc(0)
res7: botkop.numsca.Tensor =
[[0.00,  1.00,  2.00,  3.00],
 [4.00,  5.00,  6.00,  7.00],
 [8.00,  9.00,  10.00,  11.00]]
 
scala> tc(0, 1)
res8: botkop.numsca.Tensor = [4.00,  5.00,  6.00,  7.00]

Update

In place

scala> val t = ta.copy()
t: botkop.numsca.Tensor = [0.00,  1.00,  2.00,  3.00,  4.00,  5.00,  6.00,  7.00,  8.00,  9.00]

scala> t(3) := -5
scala> t
res16: botkop.numsca.Tensor = [0.00,  1.00,  2.00,  -5.00,  4.00,  5.00,  6.00,  7.00,  8.00,  9.00]

scala> t(0) += 7
scala> t
res18: botkop.numsca.Tensor = [7.00,  1.00,  2.00,  -5.00,  4.00,  5.00,  6.00,  7.00,  8.00,  9.00]

Array wise

scala> val a2 = 2 * ta
val a2 = 2 * ta
a2: botkop.numsca.Tensor = [0.00,  2.00,  4.00,  6.00,  8.00,  10.00,  12.00,  14.00,  16.00,  18.00]

Slicing

Note:

  • negative indexing is supported
  • Python notation t[:3] must be written as t(0 :> 3) or t(:>(3))

Not supported (yet):

  • step size
  • ellipsis

Single dimension

Slice over a single dimension

scala> val a0 = ta.copy().reshape(10, 1)
a0: botkop.numsca.Tensor = [0.00,  1.00,  2.00,  3.00,  4.00,  5.00,  6.00,  7.00,  8.00,  9.00]

scala> val a1 = a0(1 :>)
a1: botkop.numsca.Tensor = [1.00,  2.00,  3.00,  4.00,  5.00,  6.00,  7.00,  8.00,  9.00]

scala> val a2 = a0(0 :> -1)
a2: botkop.numsca.Tensor = [0.00,  1.00,  2.00,  3.00,  4.00,  5.00,  6.00,  7.00,  8.00]

scala> val a3 = a1 - a2
a3: botkop.numsca.Tensor = [1.00,  1.00,  1.00,  1.00,  1.00,  1.00,  1.00,  1.00,  1.00]

scala> ta(:>, 5 :>)
res19: botkop.numsca.Tensor = [5.00,  6.00,  7.00,  8.00,  9.00]

scala> ta(:>, -3 :>)
res4: botkop.numsca.Tensor = [7.00,  8.00,  9.00]

Update single dimension slice

scala> val t = ta.copy()
t: botkop.numsca.Tensor = [0.00,  1.00,  2.00,  3.00,  4.00,  5.00,  6.00,  7.00,  8.00,  9.00]

Assign another tensor

scala> t(2 :> 5) := -ns.ones(3)
scala> t
res6: botkop.numsca.Tensor = [0.00,  1.00,  -1.00,  -1.00,  -1.00,  5.00,  6.00,  7.00,  8.00,  9.00]

Assign a value

scala> t(2 :> 5) := 33
scala> t
res8: botkop.numsca.Tensor = [0.00,  1.00,  33.00,  33.00,  33.00,  5.00,  6.00,  7.00,  8.00,  9.00]

Update in place

scala> t(2 :> 5) -= 1
scala> t
res10: botkop.numsca.Tensor = [0.00,  1.00,  32.00,  32.00,  32.00,  5.00,  6.00,  7.00,  8.00,  9.00]

Multidimensional slices

scala> tb
res11: botkop.numsca.Tensor =
[[0.00,  1.00,  2.00],
 [3.00,  4.00,  5.00],
 [6.00,  7.00,  8.00]]
 
scala> tb(2:>, :>)
res15: botkop.numsca.Tensor = [6.00,  7.00,  8.00]

Mixed range/integer indexing. Note that integers are implicitly translated to ranges, and this differs from Python.

scala> tb(1, 0 :> -1)
res1: botkop.numsca.Tensor = [3.00,  4.00]

Fancy indexing

Boolean indexing

scala> val c = ta < 5 && ta > 1
c: botkop.numsca.Tensor = [0.00,  0.00,  1.00,  1.00,  1.00,  0.00,  0.00,  0.00,  0.00,  0.00]

This returns a TensorSelection:

scala> val d = ta(c)
d: botkop.numsca.TensorSelection = TensorSelection([0.00,  1.00,  2.00,  3.00,  4.00,  5.00,  6.00,  7.00,  8.00,  9.00],[[I@153ea1aa,None)

Which is implicitly converted to a Tensor when needed:

scala> val d: Tensor = ta(c)
d: botkop.numsca.Tensor = [2.00,  3.00,  4.00]

Or you can force it to become a Tensor:

scala> ta(c).asTensor
res10: botkop.numsca.Tensor = [2.00,  3.00,  4.00]

Updating:

scala> val t = ta.copy()
scala> t(ta < 5 && ta > 1) := -7
res6: botkop.numsca.Tensor = [0.00,  1.00,  -7.00,  -7.00,  -7.00,  5.00,  6.00,  7.00,  8.00,  9.00]

Selection over multiple dimensions:

scala> val c: Tensor = tc(tc % 5 == 0)
c: botkop.numsca.Tensor = [0.00,  5.00,  10.00,  15.00,  20.00]

Updating over multiple dimensions:

scala> val t1 = tc.copy()
t1: botkop.numsca.Tensor =
[[[0.00,  1.00,  2.00,  3.00],
  [4.00,  5.00,  6.00,  7.00],
  [8.00,  9.00,  10.00,  11.00]],

 [[12.00,  13.00,  14.00,  15.00],
  [16.00,  17.00,  18.00,  19.00],
  [20.00,  21.00,  22.00,  23.00]]]
  
scala> t1(t1 > 5 && t1 < 15) *= 2
res21: botkop.numsca.Tensor =
[[[0.00,  1.00,  2.00,  3.00],
  [4.00,  5.00,  12.00,  14.00],
  [16.00,  18.00,  20.00,  22.00]],

 [[24.00,  26.00,  28.00,  15.00],
  [16.00,  17.00,  18.00,  19.00],
  [20.00,  21.00,  22.00,  23.00]]]

List of location indexing

scala> val primes = Tensor(2, 3, 5, 7, 11, 13, 17, 19, 23)

scala> val idx = Tensor(3, 4, 1, 2, 2)

scala> primes(idx).asTensor
res23: botkop.numsca.Tensor = [7.00,  11.00,  3.00,  5.00,  5.00]

Reshape according to index:

scala> tb
res25: botkop.numsca.Tensor =
[[0.00,  1.00,  2.00],
 [3.00,  4.00,  5.00],
 [6.00,  7.00,  8.00]]

scala> primes(tb).asTensor
res24: botkop.numsca.Tensor =
[[2.00,  3.00,  5.00],
 [7.00,  11.00,  13.00],
 [17.00,  19.00,  23.00]]

Use as a look-up table:

scala> val numSamples = 4
       val numClasses = 3
       val x = ns.arange(numSamples * numClasses).reshape(numSamples, numClasses)
       val y = Tensor(0, 1, 2, 1)
       val z: Tensor = x(ns.arange(numSamples), y)
res26: botkop.numsca.Tensor = [0.00,  4.00,  8.00,  10.00]

Update along a single dimension:

scala> val primes = Tensor(2, 3, 5, 7, 11, 13, 17, 19, 23)
primes: botkop.numsca.Tensor = [2.00,  3.00,  5.00,  7.00,  11.00,  13.00,  17.00,  19.00,  23.00]

scala> val idx = Tensor(3, 4, 1, 2, 2)
idx: botkop.numsca.Tensor = [3.00,  4.00,  1.00,  2.00,  2.00]

scala> primes(idx) := 0

scala> primes
res1: botkop.numsca.Tensor = [2.00,  0.00,  0.00,  0.00,  0.00,  13.00,  17.00,  19.00,  23.00]

Multiple dimensions

scala> val a = ns.arange(6).reshape(3, 2) + 1
a: botkop.numsca.Tensor =
[[1.00,  2.00],
 [3.00,  4.00],
 [5.00,  6.00]]

scala> val s1 = Tensor(0, 1, 2)
s1: botkop.numsca.Tensor = [0.00,  1.00,  2.00]

scala> val s2 = Tensor(0, 1, 0)
s2: botkop.numsca.Tensor = [0.00,  1.00,  0.00]

scala> val r1: Tensor = a(s1, s2)
r1: botkop.numsca.Tensor = [1.00,  4.00,  5.00]

An index will be broadcast if needed:

scala> val y = ns.arange(35).reshape(5, 7)
y: botkop.numsca.Tensor =
[[0.00,  1.00,  2.00,  3.00,  4.00,  5.00,  6.00],
 [7.00,  8.00,  9.00,  10.00,  11.00,  12.00,  13.00],
 [14.00,  15.00,  16.00,  17.00,  18.00,  19.00,  20.00],
 [21.00,  22.00,  23.00,  24.00,  25.00,  26.00,  27.00],
 [28.00,  29.00,  30.00,  31.00,  32.00,  33.00,  34.00]]

scala> val r5: Tensor = y(Tensor(0, 2, 4), Tensor(1))
r5: botkop.numsca.Tensor = [1.00,  15.00,  29.00]

Update along multiple dimensions:

scala> val a = ns.arange(6).reshape(3, 2) + 1
a: botkop.numsca.Tensor =
[[1.00,  2.00],
 [3.00,  4.00],
 [5.00,  6.00]]

scala> val s1 = Tensor(1, 1, 2)
s1: botkop.numsca.Tensor = [1.00,  1.00,  2.00]

scala> val s2 = Tensor(0, 1, 0)
s2: botkop.numsca.Tensor = [0.00,  1.00,  0.00]

scala> a(s1, s2) := 0
res1: botkop.numsca.Tensor =
[[1.00,  2.00],
 [0.00,  0.00],
 [0.00,  6.00]]

Broadcasting

scala> val x = ns.arange(4)
x: botkop.numsca.Tensor = [0.00,  1.00,  2.00,  3.00]

scala> val xx = x.reshape(4, 1)
xx: botkop.numsca.Tensor = [0.00,  1.00,  2.00,  3.00]

scala> val y = ns.ones(5)
y: botkop.numsca.Tensor = [1.00,  1.00,  1.00,  1.00,  1.00]

scala> val z = ns.ones(3, 4)
    val z = ns.ones(3, 4)
[[1.00,  1.00,  1.00,  1.00],
 [1.00,  1.00,  1.00,  1.00],
 [1.00,  1.00,  1.00,  1.00]]

scala> (xx + y)
[[1.00,  1.00,  1.00,  1.00,  1.00],
 [2.00,  2.00,  2.00,  2.00,  2.00],
 [3.00,  3.00,  3.00,  3.00,  3.00],
 [4.00,  4.00,  4.00,  4.00,  4.00]]

scala> x + z
[[1.00,  2.00,  3.00,  4.00],
 [1.00,  2.00,  3.00,  4.00],
 [1.00,  2.00,  3.00,  4.00]]

Outer sum:

scala> val a = Tensor(0.0, 10.0, 20.0, 30.0).reshape(4, 1)
a: botkop.numsca.Tensor = [0.00,  10.00,  20.00,  30.00]

scala> val b = Tensor(1.0, 2.0, 3.0)
b: botkop.numsca.Tensor = [1.00,  2.00,  3.00]

scala> a + b
res6: botkop.numsca.Tensor =
[[1.00,  2.00,  3.00],
 [11.00,  12.00,  13.00],
 [21.00,  22.00,  23.00],
 [31.00,  32.00,  33.00]]

Vector Quantization from EricsBroadcastingDoc:

scala> val observation = Tensor(111.0, 188.0)

scala> val codes = Tensor( 102.0, 203.0, 132.0, 193.0, 45.0, 155.0, 57.0, 173.0).reshape(4, 2)
codes: botkop.numsca.Tensor =
[[102.00,  203.00],
 [132.00,  193.00],
 [45.00,  155.00],
 [57.00,  173.00]]

scala> val diff = codes - observation
diff: botkop.numsca.Tensor =
[[-9.00,  15.00],
 [21.00,  5.00],
 [-66.00,  -33.00],
 [-54.00,  -15.00]]

scala> val dist = ns.sqrt(ns.sum(ns.square(diff), axis = -1))
dist: botkop.numsca.Tensor = [17.49,  21.59,  73.79,  56.04]

scala>     val nearest = ns.argmin(dist).squeeze()
nearest: Double = 0.0