• Stars
    star
    257
  • Rank 158,728 (Top 4 %)
  • Language
    Python
  • Created about 5 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting

20.10.26 Update: Due to the difficulty of installation and code maintenance caused by frequent updates of pytorch-lightning, the code does not work correctly now. We hope this code is useful for your reference, especially the part about the model, however, we are sorry that we will no longer maintain the project. We recommend you to refer to other similar applications of self-attention mechanism in time series, such as "Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting" and https://github.com/maxjcohen/transformer.

This project is the PyTorch implementation of the paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting", in which we propose a dual self-attention network (DSANet) for multivariate time series forecasting. The network architecture is illustrated in the following figure, and more details about the effect of each component can be found in the paper.

Requirements

  • Python 3.5 or above
  • PyTorch 1.1 or above
  • pytorch-lightning

How to run

You need to prepare the dataset first. Check here.

# clone project
git clone https://github.com/bighuang624/DSANet.git

# install dependencies
cd DSANet
pip install requirements.txt

# run
python single_cpu_trainer.py --data_name {data_name} --n_multiv {n_multiv}

Notice: At present, we find that there are some bugs (presumably some problems left by the old version of pytorch-lightning) that make our code unable to run correctly on GPUs. You can currently run the code on the CPU as above.

Citation

If our code is helpful for your research, please cite our paper:

@inproceedings{Huang2019DSANet,
  author = {Siteng Huang and Donglin Wang and Xuehan Wu and Ao Tang},
  title = {DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting},
  booktitle = {Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM 2019)},
  month = {November},
  year = {2019},
  address = {Beijing, China}
}

Acknowledgement

Part of the code is heavily borrowed from jadore801120/attention-is-all-you-need-pytorch.

More Repositories

1

AI-research-tools

🔨AI 方向好用的科研工具
2,220
star
2

Andrew-Ng-Deep-Learning-notes

吴恩达《深度学习》系列课程笔记及代码 | Notes in Chinese for Andrew Ng Deep Learning Course
Jupyter Notebook
995
star
3

Time-Series-Papers

List of awesome papers about time series, mainly including algorithms based on machine learning | 收录时间序列分析中各个研究领域的高水平文章,主要包含基于机器学习的算法
468
star
4

Algorithms-notes

《算法(第4版)》笔记及代码 | 《Algorithms(Fourth Edition)》notes & code
Java
313
star
5

sentiment-analysis-webapp

[不再更新]中文短文本情感分析 web 应用 | A web app about Chinese sentences sentiment analysis
Python
43
star
6

VoP

[CVPR 2023] VoP: Text-Video Co-operative Prompt Tuning for Cross-Modal Retrieval
33
star
7

Hung-yi-Lee-ML-notes

📝《李宏毅机器学习》课程笔记(暂停更新) | Notes for Hung-yi-Lee Machine Learning Spring 2019 (Suspension)
23
star
8

ML-beginning-projects

基础的机器学习项目集,包含数据预处理、模型评估与选择、可视化以及分类算法等
Jupyter Notebook
22
star
9

LeetCode-everyday

每天一题 LeetCode | workin' everyday~Hustle everyday~LeetCode everyday~yuh yuh yuh
Java
13
star
10

Troika

[CVPR 2024] Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning
Python
13
star
11

yuki

使用 Node.js 开发的项目目录管理工具,能够将项目内文件结构自动映射并生成为 README.md | A project directory management tool, which helps you to map the file structure inside a project to README.md
JavaScript
12
star
12

bighuang624.github.io

学术主页 | Academic Page
SCSS
10
star
13

AGAM

Code for the AAAI 2021 paper "Attributes-Guided and Pure-Visual Attention Alignment for Few-Shot Recognition".
Python
10
star
14

Andrew-Ng-Machine-Learning-notes

吴恩达《机器学习》课程笔记
10
star
15

UW-ml-foundations-notes

Coursera 华盛顿大学《机器学习基础:案例研究》课程笔记及练习代码
Jupyter Notebook
9
star
16

CS330-notes

📝Notes in Chinese for CS330 at Stanford: Deep Multi-Task and Meta Learning (Fall 2019)
6
star
17

ai-robot

简单聊天机器人的前端
JavaScript
6
star
18

BiliInfoCrawler

基于 Java 的 BiliBili 视频信息爬虫(可能已经失效) | BiliBili video crawler based on Java
Java
5
star
19

FE-resume

基于 Vue 开发的个人简历 | Personal resume powered by Vue.js
JavaScript
5
star
20

QA-management-system-FE

自动问答后台管理系统前端界面
Vue
5
star
21

Machine-learning-in-action-notes

《机器学习实战》笔记及代码
Python
4
star
22

Python-Learning

Python 练习代码
Python
3
star
23

my-booklist

那些年我读过的书 | Once a time in books
3
star
24

sentiment-analysis-webapp-frontend

中文情感分析 web 应用前端部分 | The frontend project of sentiment-analysis-webapp
JavaScript
3
star
25

JAVALearningNotes

Kyon Huang 的 java 学习笔记
1
star
26

PyTorch-models

PyTorch-based model exercise
Python
1
star
27

SimpleJSONCompiler

A simple JSON parser that parses JSON text completely and extracts specific information from it
Java
1
star
28

pic-repo

供 PicGo 使用的图床
1
star