• Stars
    star
    137
  • Rank 266,121 (Top 6 %)
  • Language
    Jupyter Notebook
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

BTK Akademi -1 Milyon İstihdam Projesi için Merve Ayyüce Kızrak tarafından Hazırlanmıştır.

Keras ile Derin Öğrenmeye Giriş

Bu eğitim BTK Akademi - 1 Milyon İstihdam Projesi için Merve Ayyüce Kızrak tarafından hazırlanmıştır.

Eğitime buradan ulaşabilirsiniz.

Eğitimin tanıtım videosuna buradan ulaşabilirsiniz.

Eğitimin Amacı:

Bu eğitim baştan sona derin öğrenme temelleri üzerine hazırlanmıştır. Matematiksel teorik bilgileri uygulamalı olarak ele alan bir eğitimdir. Python programlama dili ve Keras derin öğrenme kütüphanesini araç olarak kullanan bu eğitimde uygulamaları bulut üzerinde gerçekleştirmenin kolaylığından da faydalanılacaktır. Eğitimin sonunda bilgisayarlı görü, dizi modeller, üretici modeller ile ilgili temeller uygulayabilir olunacaktır. Ayrıca derin öğrenme modellerinin iyileştirilmesi için bilinmesi gereken incelikler de dersin kapsamındadır. Kapanışta derin öğrenmenin limitleri, geleceği ve topluma etkisi hakkında da vizyon çizilmektedir.


Eğitim Gereksinimleri (Ön Koşul Beceriler):

  • Temel matematik bilgisi
  • Temel lineer cebir ve istatistik bilgisi
  • Temel Python programlama dili bilgisi
  • Temel makine öğrenmesi bilgisi

Kursu Kimler Almalı:

  • Yapay zekâ temellerini öğrenmek isteyenler
  • Derin öğrenme yöntemlerini öğrenmek isteyenler
  • Python programlama dili ve Keras kütüphanesini kullanarak derin öğrenme modelleri ile çalışmak isteyenler

Eğitim için sıkça sorulan sorular (SSS) ve yanıtlarına buradan ulaşabilirsiniz. Ayrıca konuya derinlemesine dalmak için daha fazla soru ve cevap için Yapay Zekâ ve Derin Öğrenmeye Başlama Rehberi yazıma da göz atabilirsiniz.

📺 BTK Akademi ile geçekleştidiğimiz ve eğitimn kapsamındaki YouTube sohbeti ise hemen burada 👈🏻


EĞİTİM İÇERİĞİ

BÖLÜM 1: Motivasyon ve Derin Öğrenmeye Giriş

  • Motivasyon
  • Yapay Zekâ Nedir, Tarihçesi ve Kilometre Taşları
  • Veri Nedir ve Yapay Zekâ ile İlişkisi
  • Derin Öğrenme Nedir ve Terminolojisi

BÖLÜM 2: Derin Öğrenme Alet Çantası (Uygulamalı)

  • Derin Öğrenmeyi Başarılı Yapan Farkları
  • Derin Öğrenme için Donanım, Programlama Dilleri ve Kütüphaneler
  • Derin Öğrenme için Veri ve Algoritmalar
  • Derin Öğrenme Uygulama Ortamları

BÖLÜM 3: Derin Öğrenmenin Matematiksel Temelleri (Uygulamalı)

  • Vektörler / Matrisler / Tensörler
  • Türev ve Gerekliliği
  • Stokastik Gradyan İniş ve Optimizasyon
  • Zincir Kuralı ve Geriye Yayılım Algoritması
  • MNIST Veri Kümesinde Sinir Ağı Modeli Oluşturma ve Eğitme

BÖLÜM 4: Derin Sinir Ağları (Uygulamalı)

  • Katmanlar
  • Modeller
  • Kayıp Fonksiyonları
  • Optimizasyon Algoritmaları
  • State-of-the-Art Modellerin İncelenmesi

BÖLÜM 5: Yapay Öğrenme Temelleri ve Düzenlileştirme Yaklaşımları (Uygulamalı)

  • Denetimli Öğrenme
  • Denetimsiz Öğrenme
  • Yarı-Denetimli Öğrenme
  • Pekiştirmeli Öğrenme
  • Yapay Öğrenme Temelleri ve Düzenlileştirme Yaklaşımları
  • Eğitim, Doğrulama, Test Kümelerinin Oluşturulması ve Başarı Ölçütlerinin Belirlenmesi
  • Veri Artırma
  • Aşırı Uydurma, Az Uydurma ve Erken Durdurma
  • Aktivasyon Fonksiyonları
  • Optimizasyon Algoritmalarının Belirlenmesi
  • Aktarımlı Öğrenme, Çoklu-Görev Öğrenme

BÖLÜM 6: Evrişimli Sinir Ağları (Uygulamalı)

  • Evrişimli Sinir Ağı Kullanım Alanları
  • Evrişimli Sinir Ağı Modelleme Adımları
  • Evrişimli Sinir Ağı Eğitme, Sonuçları Değerlendirme ve Görselleştirme
  • Nesne Tanıma Örnek Uygulamalar
  • Yüz Görüntülerin Duygu Tanıma Örnek Uygulamalar

BÖLÜM 7: Yinelemeli Sinir Ağları (Uygulamalı)

  • Yinelemeli Sinir Ağları Kullanım Alanları
  • Dizi Modellerin Oluşturulması
  • Uzun-Kısa Vadeli Bellek Modeller
  • Basit Yinelemeli Sinir Ağı Oluşturma
  • IMDB Verisinde RNN ve LSTM Uygulaması

BÖLÜM 8: Üretici Modeller (Uygulamalı)

  • Üretici Modellerin Kullanım Alanları
  • DeepDream
  • Stil Aktarımı
  • Değişimsel Otokodlayıcılar
  • Üretici Çekişmeli Ağlar
  • Sentetik Veri Üretimi Uygulamaları

BÖLÜM 9: İleri Seviye Derin Öğrenme Uygulamaları ve Anahtar Kavramlar (Uygulamalı)

  • Keras API Kullanımı
  • TensorBoard Görselleştirme Kütüphanesinin Kullanımı
  • Derin Öğrenme için Kilit Teknolojiler
  • Derin Öğrenme Çalışmalarında Günceli Takip Etmek için İzlenecek Yollar

BÖLÜM 10: Derin Öğrenmenin Limitleri ve Sosyal Topluma Etkisi Derin Öğrenmenin Limitleri

  • Derin Öğrenmenin Geleceği
  • Derin Öğrenmede Yanlılık ve Saldırıya Karşı Direnç İncelemesi
  • Derin Öğrenmenin Sosyal Topluma Etkisi ve Gelişmekte Olan İş Alanları

Ders içinde kullanılan teknik terimler için öneri sözlük:

Yapay Zekâ Araştırma İnisiyatifi Çevrimiçi Yapay Öğrenme Sözlüğü: https://yz-ai.github.io/sozluk Sözlük İngilizce-Türkçe ve Türkçe-İngilizce olarak arama yapmaya uygun şekilde Prof. Dr. Ethem Alpaydın’ın Yapay Öğrenme kitabındaki sözlükten kaynak alınarak hazırlanmıştır.


Tavsiye Edilen/Yardımcı Kaynaklar:

1- Yapay Zekâ ve Derin Öğrenmeye Başlama Rehberi

2- Stanford Üniversitesi Derin Öğrenme Ders Notları - Türkçe

3- Yapay Zekâ Araştırma İnisiyatifi – Türkçe Kaynaklar

4- Kapsamlı Derin Öğrenme Rehberi

5- Derin Öğrenme Kitabı

6- Keras Dokümantasyonu

7- Python ile Derin Öğrenme


Atıf Dosya Bağlantıları:

  1. Temel Kaynak
  2. Genel Kaynak
  3. Genel Kaynak
  4. 1_Motivasyon ve Derin Öğrenmeye Giriş
  5. 2_Derin Öğrenmenin Matematiksel Temelleri
  6. 4_State of the Art Modellerin İncelenmesi
  7. 4_State of the Art Modellerin İncelenmesi
  8. 4_State of the Art Modellerin İncelenmesi
  9. 4_State of the Art Modellerin İncelenmesi
  10. 4_State of the Art Modellerin İncelenmesi
  11. 4_State of the Art Modellerin İncelenmesi
  12. 5_Aktivasyon Fonksiyonları
  13. 5_Yapay Öğrenme Temelleri ve Düzenlileştirme Yaklaşımları
  14. 5_Optimizasyon Algoritmalarının Belirlenmesi
  15. 6_Evrişimli Sinir Ağları
  16. 7_Yinelemeli Sinir Ağları
  17. 7_Yinelemeli Sinir Ağları
  18. 7_Yinelemeli Sinir Ağları
  19. 7_Yinelemeli Sinir Ağları
  20. 8_Üretici Çekişmeli Ağlar
  21. 8_Üretici Çekişmeli Ağlar
  22. 8_Üretici Çekişmeli Ağlar

More Repositories

1

Udemy_DerinOgrenmeyeGiris

Udemy Derin Öğrenmeye Giriş Kursunun Uygulamaları ve Daha Fazlası
Jupyter Notebook
325
star
2

Kapsamli_Derin_Ogrenme_Rehberi

Bu çalışma araştırmalar yaparken benzerlerine rastlayıp iyileştirerek derlemeye çalıştığım ve derin öğrenme (deep learning) konusunda kısa bir özet ve bolca kaynak yönlendirmesi olan (hatta sonunda koca bir liste var) hızlıca konuya giriş yapılabilinmesi için gereklilikleri özetlemektedir. Lütfen katkı vermekten çekinmeyin 👽
Jupyter Notebook
254
star
3

PyTorch-ile-Goruntu-Siniflandirma

PyTorch ile Görüntü Sınıflandırma
Jupyter Notebook
69
star
4

Yapay_Ogrenme_Modeli_Gelistirme_Puf_Noktalari

Yapay Öğrenme Modeli Geliştirirken Genellikle Karşılaşılan Problemler ve Olası Çözümleri
59
star
5

Kapsul-Aglari-ile-Isaret-Dili-Tanima

Recognition of Sign Language using Capsule Networks
Python
45
star
6

GAN_UreticiCekismeliAglar_ile_SentetikVeriUretme

DCGAN ile Keras kütüphanesi kullanarak Fashion MNIST verileri üretme uygulaması
Jupyter Notebook
41
star
7

DogrusalRegresyonUygulamasi

Doğrusal Regresyon kullanarak gıda taşımacılığında populasyon kâr kestirimi uygulaması
Jupyter Notebook
36
star
8

BERTileSentimentAnaliz

BERT ile Sentiment Analizi
Jupyter Notebook
28
star
9

Predictive_Maintenance_w_LSTM

Predictive_Maintenance_of_AircraftMotorHealth_with_LSTM_Method
Jupyter Notebook
20
star
10

EfficientNet-Transfer-Learning-Implementation

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Jupyter Notebook
18
star
11

TransferLearning_FineTuning

Transfer Learning for Deep Learning
Jupyter Notebook
17
star
12

Duygu-Cinsiyet_Tanima-Emotion-Gender_Recognition

Google Colab Notebook-Duygu ve Duygu-Cinsiyet Tanıma / Emotion and Emotion-Gender Recogniton
Jupyter Notebook
15
star
13

EEM312-Haberlesme-Laboratuvari

Haliç Üniversitesi, Elektrik-Elektronik Mühendisliği,EEM 312 Haberleşme Laboratuvarı
Jupyter Notebook
12
star
14

Tensorflow-Tutorial

Jupyter Notebook
9
star
15

Recycling_Using_Deep_Neural_Networks

18-31 Ağustos 2019 tarihlerinde Bilgisayar Mühendisleri Odası ve Kadıköy Belediyesi (İDEA Kadıköy) tarafından düzenlenecek olan Yapay Zekâ Yaz Atölyesi için derin öğrenme problem çözme oturumu kapsamında hazırlanmıştır. http://yapayzekayazatolyesi.com/
Jupyter Notebook
4
star
16

ayyucekizrak

My personal repository
3
star
17

GanStarter

GAN Code for presentation
Python
2
star
18

Crowd-Analysis

Jupyter Notebook
2
star
19

Synthesis-ans-Semantic-manipulation-w-GAN

Python
1
star