• Stars
    star
    304
  • Rank 137,274 (Top 3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

AWS X-Ray SDK for the Python programming language

Build Status codecov

πŸ“£ OpenTelemetry Python with AWS X-Ray

AWS X-Ray supports using OpenTelemetry Python and the AWS Distro for OpenTelemetry (ADOT) Collector to instrument your application and send trace data to X-Ray. The OpenTelemetry SDKs are an industry-wide standard for tracing instrumentation. They provide more instrumentations and have a larger community for support, but may not have complete feature parity with the X-Ray SDKs. See choosing between the ADOT and X-Ray SDKs for more help with choosing between the two.

If you want additional features when tracing your Python applications, please open an issue on the OpenTelemetry Python Instrumentation repository.

πŸ“£ Python Versions End-of-Support Notice

AWS X-Ray SDK for Python versions >2.11.0 has dropped support for Python 2.7, 3.4, 3.5, and 3.6.

AWS X-Ray SDK for Python

Screenshot of the AWS X-Ray console

Installing

The AWS X-Ray SDK for Python is compatible with Python 3.7, 3.8, 3.9, 3.10, and 3.11.

Install the SDK using the following command (the SDK's non-testing dependencies will be installed).

pip install aws-xray-sdk

To install the SDK's testing dependencies, use the following command.

pip install tox

Getting Help

Use the following community resources for getting help with the SDK. We use the GitHub issues for tracking bugs and feature requests.

Opening Issues

If you encounter a bug with the AWS X-Ray SDK for Python, we want to hear about it. Before opening a new issue, search the existing issues to see if others are also experiencing the issue. Include the version of the AWS X-Ray SDK for Python, Python language, and botocore/boto3 if applicable. In addition, include the repro case when appropriate.

The GitHub issues are intended for bug reports and feature requests. For help and questions about using the AWS SDK for Python, use the resources listed in the Getting Help section. Keeping the list of open issues lean helps us respond in a timely manner.

Documentation

The developer guide provides in-depth guidance about using the AWS X-Ray service. The API Reference provides guidance for using the SDK and module-level documentation.

Quick Start

Configuration

from aws_xray_sdk.core import xray_recorder

xray_recorder.configure(
    sampling=False,
    context_missing='LOG_ERROR',
    plugins=('EC2Plugin', 'ECSPlugin', 'ElasticBeanstalkPlugin'),
    daemon_address='127.0.0.1:3000',
    dynamic_naming='*mysite.com*'
)

Start a custom segment/subsegment

Using context managers for implicit exceptions recording:

from aws_xray_sdk.core import xray_recorder

with xray_recorder.in_segment('segment_name') as segment:
    # Add metadata or annotation here if necessary
    segment.put_metadata('key', dict, 'namespace')
    with xray_recorder.in_subsegment('subsegment_name') as subsegment:
        subsegment.put_annotation('key', 'value')
        # Do something here
    with xray_recorder.in_subsegment('subsegment2') as subsegment:
        subsegment.put_annotation('key2', 'value2')
        # Do something else 

async versions of context managers:

from aws_xray_sdk.core import xray_recorder

async with xray_recorder.in_segment_async('segment_name') as segment:
    # Add metadata or annotation here if necessary
    segment.put_metadata('key', dict, 'namespace')
    async with xray_recorder.in_subsegment_async('subsegment_name') as subsegment:
        subsegment.put_annotation('key', 'value')
        # Do something here
    async with xray_recorder.in_subsegment_async('subsegment2') as subsegment:
        subsegment.put_annotation('key2', 'value2')
        # Do something else 

Default begin/end functions:

from aws_xray_sdk.core import xray_recorder

# Start a segment
segment = xray_recorder.begin_segment('segment_name')
# Start a subsegment
subsegment = xray_recorder.begin_subsegment('subsegment_name')

# Add metadata or annotation here if necessary
segment.put_metadata('key', dict, 'namespace')
subsegment.put_annotation('key', 'value')
xray_recorder.end_subsegment()

# Close the segment
xray_recorder.end_segment()

Oversampling Mitigation

To modify the sampling decision at the subsegment level, subsegments that inherit the decision of their direct parent (segment or subsegment) can be created using xray_recorder.begin_subsegment() and unsampled subsegments can be created using xray_recorder.begin_subsegment_without_sampling().

The code snippet below demonstrates creating a sampled or unsampled subsegment based on the sampling decision of each SQS message processed by Lambda.

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core.models.subsegment import Subsegment
from aws_xray_sdk.core.utils.sqs_message_helper import SqsMessageHelper

def lambda_handler(event, context):

    for message in event['Records']:
        if SqsMessageHelper.isSampled(message):
            subsegment = xray_recorder.begin_subsegment('sampled_subsegment')
            print('sampled - processing SQS message')

        else:
            subsegment = xray_recorder.begin_subsegment_without_sampling('unsampled_subsegment')
            print('unsampled - processing SQS message')
    
    xray_recorder.end_subsegment()   

The code snippet below demonstrates wrapping a downstream AWS SDK request with an unsampled subsegment.

from aws_xray_sdk.core import xray_recorder, patch_all
import boto3

patch_all()

def lambda_handler(event, context):
    subsegment = xray_recorder.begin_subsegment_without_sampling('unsampled_subsegment')
    client = boto3.client('sqs')
    print(client.list_queues())
    
    xray_recorder.end_subsegment()

Capture

As a decorator:

from aws_xray_sdk.core import xray_recorder

@xray_recorder.capture('subsegment_name')
def myfunc():
    # Do something here

myfunc()

or as a context manager:

from aws_xray_sdk.core import xray_recorder

with xray_recorder.capture('subsegment_name') as subsegment:
    # Do something here
    subsegment.put_annotation('mykey', val)
    # Do something more

Async capture as decorator:

from aws_xray_sdk.core import xray_recorder

@xray_recorder.capture_async('subsegment_name')
async def myfunc():
    # Do something here

async def main():
    await myfunc()

or as context manager:

from aws_xray_sdk.core import xray_recorder

async with xray_recorder.capture_async('subsegment_name') as subsegment:
    # Do something here
    subsegment.put_annotation('mykey', val)
    # Do something more

Adding annotations/metadata using recorder

from aws_xray_sdk.core import xray_recorder

# Start a segment if no segment exist
segment1 = xray_recorder.begin_segment('segment_name')

# This will add the key value pair to segment1 as it is active
xray_recorder.put_annotation('key', 'value')

# Start a subsegment so it becomes the active trace entity
subsegment1 = xray_recorder.begin_subsegment('subsegment_name')

# This will add the key value pair to subsegment1 as it is active
xray_recorder.put_metadata('key', 'value')

if xray_recorder.is_sampled():
    # some expensitve annotations/metadata generation code here
    val = compute_annotation_val()
    metadata = compute_metadata_body()
    xray_recorder.put_annotation('mykey', val)
    xray_recorder.put_metadata('mykey', metadata)

Generate NoOp Trace and Entity Id

X-Ray Python SDK will by default generate no-op trace and entity id for unsampled requests and secure random trace and entity id for sampled requests. If customer wants to enable generating secure random trace and entity id for all the (sampled/unsampled) requests (this is applicable for trace id injection into logs use case) then they should set the AWS_XRAY_NOOP_ID environment variable as False.

Disabling X-Ray

Often times, it may be useful to be able to disable X-Ray for specific use cases, whether to stop X-Ray from sending traces at any moment, or to test code functionality that originally depended on X-Ray instrumented packages to begin segments prior to the code call. For example, if your application relied on an XRayMiddleware to instrument incoming web requests, and you have a method which begins subsegments based on the segment generated by that middleware, it would be useful to be able to disable X-Ray for your unit tests so that SegmentNotFound exceptions are not thrown when you need to test your method.

There are two ways to disable X-Ray, one is through environment variables, and the other is through the SDKConfig module.

Disabling through the environment variable:

Prior to running your application, make sure to have the environment variable AWS_XRAY_SDK_ENABLED set to false.

Disabling through the SDKConfig module:

from aws_xray_sdk import global_sdk_config

global_sdk_config.set_sdk_enabled(False)

Important Notes:

  • Environment Variables always take precedence over the SDKConfig module when disabling/enabling. If your environment variable is set to false while your code calls global_sdk_config.set_sdk_enabled(True), X-Ray will still be disabled.

  • If you need to re-enable X-Ray again during runtime and acknowledge disabling/enabling through the SDKConfig module, you may run the following in your application:

import os
from aws_xray_sdk import global_sdk_config

del os.environ['AWS_XRAY_SDK_ENABLED']
global_sdk_config.set_sdk_enabled(True)

Trace AWS Lambda functions

from aws_xray_sdk.core import xray_recorder

def lambda_handler(event, context):
    # ... some code

    subsegment = xray_recorder.begin_subsegment('subsegment_name')
    # Code to record
    # Add metadata or annotation here, if necessary
    subsegment.put_metadata('key', dict, 'namespace')
    subsegment.put_annotation('key', 'value')

    xray_recorder.end_subsegment()

    # ... some other code

Trace ThreadPoolExecutor

import concurrent.futures

import requests

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch

patch(('requests',))

URLS = ['http://www.amazon.com/',
        'http://aws.amazon.com/',
        'http://example.com/',
        'http://www.bilibili.com/',
        'http://invalid-domain.com/']

def load_url(url, trace_entity):
    # Set the parent X-Ray entity for the worker thread.
    xray_recorder.set_trace_entity(trace_entity)
    # Subsegment captured from the following HTTP GET will be
    # a child of parent entity passed from the main thread.
    resp = requests.get(url)
    # prevent thread pollution
    xray_recorder.clear_trace_entities()
    return resp

# Get the current active segment or subsegment from the main thread.
current_entity = xray_recorder.get_trace_entity()
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
    # Pass the active entity from main thread to worker threads.
    future_to_url = {executor.submit(load_url, url, current_entity): url for url in URLS}
    for future in concurrent.futures.as_completed(future_to_url):
        url = future_to_url[future]
        try:
            data = future.result()
        except Exception:
            pass

Trace SQL queries

By default, if no other value is provided to .configure(), SQL trace streaming is enabled for all the supported DB engines. Those currently are:

  • Any engine attached to the Django ORM.
  • Any engine attached to SQLAlchemy.

The behaviour can be toggled by sending the appropriate stream_sql value, for example:

from aws_xray_sdk.core import xray_recorder

xray_recorder.configure(service='fallback_name', stream_sql=True)

Patch third-party libraries

from aws_xray_sdk.core import patch

libs_to_patch = ('boto3', 'mysql', 'requests')
patch(libs_to_patch)

Automatic module patching

Full modules in the local codebase can be recursively patched by providing the module references to the patch function.

from aws_xray_sdk.core import patch

libs_to_patch = ('boto3', 'requests', 'local.module.ref', 'other_module')
patch(libs_to_patch)

An xray_recorder.capture() decorator will be applied to all functions and class methods in the given module and all the modules inside them recursively. Some files/modules can be excluded by providing to the patch function a regex that matches them.

from aws_xray_sdk.core import patch

libs_to_patch = ('boto3', 'requests', 'local.module.ref', 'other_module')
ignore = ('local.module.ref.some_file', 'other_module.some_module\.*')
patch(libs_to_patch, ignore_module_patterns=ignore)

Django

Add Django middleware

In django settings.py, use the following.

INSTALLED_APPS = [
    # ... other apps
    'aws_xray_sdk.ext.django',
]

MIDDLEWARE = [
    'aws_xray_sdk.ext.django.middleware.XRayMiddleware',
    # ... other middlewares
]

You can configure the X-Ray recorder in a Django app under the β€˜XRAY_RECORDER’ namespace. For a minimal configuration, the 'AWS_XRAY_TRACING_NAME' is required unless it is specified in an environment variable.

XRAY_RECORDER = {
    'AWS_XRAY_TRACING_NAME': 'My application', # Required - the segment name for segments generated from incoming requests
}

For more information about configuring Django with X-Ray read more about it in the API reference

SQL tracing

If Django's ORM is patched - either using the AUTO_INSTRUMENT = True in your settings file or explicitly calling patch_db() - the SQL query trace streaming can then be enabled or disabled updating the STREAM_SQL variable in your settings file. It is enabled by default.

Automatic patching

The automatic module patching can also be configured through Django settings.

XRAY_RECORDER = {
    'PATCH_MODULES': [
        'boto3',
        'requests',
        'local.module.ref',
        'other_module',
    ],
    'IGNORE_MODULE_PATTERNS': [
        'local.module.ref.some_file',
        'other_module.some_module\.*',
    ],
    ...
}

If AUTO_PATCH_PARENT_SEGMENT_NAME is also specified, then a segment parent will be created with the supplied name, wrapping the automatic patching so that it captures any dangling subsegments created on the import patching.

Django in Lambda

X-Ray can't search on http annotations in subsegments. To enable searching the middleware adds the http values as annotations This allows searching in the X-Ray console like so

This is configurable in settings with URLS_AS_ANNOTATION that has 3 valid values LAMBDA - the default, which uses URLs as annotations by default if running in a lambda context ALL - do this for every request (useful if running in a mixed lambda/other deployment) NONE - don't do this for any (avoiding hitting the 50 annotation limit)

annotation.url BEGINSWITH "https://your.url.com/here"

Add Flask middleware

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware

app = Flask(__name__)

xray_recorder.configure(service='fallback_name', dynamic_naming='*mysite.com*')
XRayMiddleware(app, xray_recorder)

Add Bottle middleware(plugin)

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.bottle.middleware import XRayMiddleware

app = Bottle()

xray_recorder.configure(service='fallback_name', dynamic_naming='*mysite.com*')
app.install(XRayMiddleware(xray_recorder))

Serverless Support for Flask & Django & Bottle Using X-Ray

Serverless is an application model that enables you to shift more of your operational responsibilities to AWS. As a result, you can focus only on your applications and services, instead of the infrastructure management tasks such as server provisioning, patching, operating system maintenance, and capacity provisioning. With serverless, you can deploy your web application to AWS Lambda and have customers interact with it through a Lambda-invoking endpoint, such as Amazon API Gateway.

X-Ray supports the Serverless model out of the box and requires no extra configuration. The middlewares in Lambda generate Subsegments instead of Segments when an endpoint is reached. This is because Segments cannot be generated inside the Lambda function, but it is generated automatically by the Lambda container. Therefore, when using the middlewares with this model, it is important to make sure that your methods only generate Subsegments.

The following guide shows an example of setting up a Serverless application that utilizes API Gateway and Lambda:

Instrumenting Web Frameworks in a Serverless Environment

Working with aiohttp

Adding aiohttp middleware. Support aiohttp >= 2.3.

from aiohttp import web

from aws_xray_sdk.ext.aiohttp.middleware import middleware
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core.async_context import AsyncContext

xray_recorder.configure(service='fallback_name', context=AsyncContext())

app = web.Application(middlewares=[middleware])
app.router.add_get("/", handler)

web.run_app(app)

Tracing aiohttp client. Support aiohttp >=3.

from aws_xray_sdk.ext.aiohttp.client import aws_xray_trace_config

async def foo():
    trace_config = aws_xray_trace_config()
    async with ClientSession(loop=loop, trace_configs=[trace_config]) as session:
        async with session.get(url) as resp
            await resp.read()

Use SQLAlchemy ORM

The SQLAlchemy integration requires you to override the Session and Query Classes for SQL Alchemy

SQLAlchemy integration uses subsegments so you need to have a segment started before you make a query.

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.sqlalchemy.query import XRaySessionMaker

xray_recorder.begin_segment('SQLAlchemyTest')

Session = XRaySessionMaker(bind=engine)
session = Session()

xray_recorder.end_segment()
app = Flask(__name__)

xray_recorder.configure(service='fallback_name', dynamic_naming='*mysite.com*')
XRayMiddleware(app, xray_recorder)

Add Flask-SQLAlchemy

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware
from aws_xray_sdk.ext.flask_sqlalchemy.query import XRayFlaskSqlAlchemy

app = Flask(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///:memory:"

XRayMiddleware(app, xray_recorder)
db = XRayFlaskSqlAlchemy(app)

Ignoring httplib requests

If you want to ignore certain httplib requests you can do so based on the hostname or URL that is being requsted. The hostname is matched using the Python fnmatch library which does Unix glob style matching.

from aws_xray_sdk.ext.httplib import add_ignored as xray_add_ignored

# ignore requests to test.myapp.com
xray_add_ignored(hostname='test.myapp.com')

# ignore requests to a subdomain of myapp.com with a glob pattern
xray_add_ignored(hostname='*.myapp.com')

# ignore requests to /test-url and /other-test-url
xray_add_ignored(urls=['/test-path', '/other-test-path'])

# ignore requests to myapp.com for /test-url
xray_add_ignored(hostname='myapp.com', urls=['/test-url'])

If you use a subclass of httplib to make your requests, you can also filter on the class name that initiates the request. This must use the complete package name to do the match.

from aws_xray_sdk.ext.httplib import add_ignored as xray_add_ignored

# ignore all requests made by botocore
xray_add_ignored(subclass='botocore.awsrequest.AWSHTTPConnection')

License

The AWS X-Ray SDK for Python is licensed under the Apache 2.0 License. See LICENSE and NOTICE.txt for more information.

More Repositories

1

aws-cli

Universal Command Line Interface for Amazon Web Services
Python
14,304
star
2

chalice

Python Serverless Microframework for AWS
Python
10,654
star
3

aws-cdk

The AWS Cloud Development Kit is a framework for defining cloud infrastructure in code
JavaScript
10,440
star
4

amazon-sagemaker-examples

Example πŸ““ Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.
Jupyter Notebook
9,542
star
5

serverless-application-model

The AWS Serverless Application Model (AWS SAM) transform is a AWS CloudFormation macro that transforms SAM templates into CloudFormation templates.
Python
9,342
star
6

aws-sdk-js

AWS SDK for JavaScript in the browser and Node.js
JavaScript
7,476
star
7

aws-sam-cli

CLI tool to build, test, debug, and deploy Serverless applications using AWS SAM
Python
6,506
star
8

aws-sdk-php

Official repository of the AWS SDK for PHP (@awsforphp)
PHP
5,886
star
9

containers-roadmap

This is the public roadmap for AWS container services (ECS, ECR, Fargate, and EKS).
Shell
5,164
star
10

karpenter

Karpenter is a Kubernetes Node Autoscaler built for flexibility, performance, and simplicity.
Go
4,615
star
11

s2n-tls

An implementation of the TLS/SSL protocols
C
4,465
star
12

aws-sdk-java

The official AWS SDK for Java 1.x. The AWS SDK for Java 2.x is available here: https://github.com/aws/aws-sdk-java-v2/
Java
4,117
star
13

aws-lambda-go

Libraries, samples and tools to help Go developers develop AWS Lambda functions.
Go
3,624
star
14

aws-sdk-pandas

pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, Neptune, OpenSearch, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).
Python
3,537
star
15

copilot-cli

The AWS Copilot CLI is a tool for developers to build, release and operate production ready containerized applications on AWS App Runner or Amazon ECS on AWS Fargate.
Go
3,488
star
16

aws-sdk-ruby

The official AWS SDK for Ruby.
Ruby
3,462
star
17

amazon-freertos

DEPRECATED - See README.md
C
2,535
star
18

aws-sdk-go-v2

AWS SDK for the Go programming language.
Go
2,518
star
19

aws-sdk-js-v3

Modularized AWS SDK for JavaScript.
TypeScript
2,476
star
20

jsii

jsii allows code in any language to naturally interact with JavaScript classes. It is the technology that enables the AWS Cloud Development Kit to deliver polyglot libraries from a single codebase!
TypeScript
2,371
star
21

sagemaker-python-sdk

A library for training and deploying machine learning models on Amazon SageMaker
Python
2,095
star
22

amazon-vpc-cni-k8s

Networking plugin repository for pod networking in Kubernetes using Elastic Network Interfaces on AWS
Go
2,071
star
23

aws-eks-best-practices

A best practices guide for day 2 operations, including operational excellence, security, reliability, performance efficiency, and cost optimization.
Python
2,022
star
24

amazon-ecs-agent

Amazon Elastic Container Service Agent
Go
2,005
star
25

lumberyard

Amazon Lumberyard is a free AAA game engine deeply integrated with AWS and Twitch – with full source.
C++
1,965
star
26

aws-sdk-net

The official AWS SDK for .NET. For more information on the AWS SDK for .NET, see our web site:
1,945
star
27

eks-anywhere

Run Amazon EKS on your own infrastructure πŸš€
Go
1,899
star
28

aws-sdk-java-v2

The official AWS SDK for Java - Version 2
Java
1,822
star
29

aws-sdk-cpp

AWS SDK for C++
1,779
star
30

amazon-ecs-cli

The Amazon ECS CLI enables users to run their applications on ECS/Fargate using the Docker Compose file format, quickly provision resources, push/pull images in ECR, and monitor running applications on ECS/Fargate.
Go
1,725
star
31

aws-sdk-php-laravel

A Laravel 5+ (and 4) service provider for the AWS SDK for PHP
PHP
1,589
star
32

serverless-java-container

A Java wrapper to run Spring, Spring Boot, Jersey, and other apps inside AWS Lambda.
Java
1,483
star
33

aws-node-termination-handler

Gracefully handle EC2 instance shutdown within Kubernetes
Go
1,443
star
34

aws-lambda-dotnet

Libraries, samples and tools to help .NET Core developers develop AWS Lambda functions.
C#
1,430
star
35

aws-fpga

Official repository of the AWS EC2 FPGA Hardware and Software Development Kit
VHDL
1,380
star
36

eks-distro

Amazon EKS Distro (EKS-D) is a Kubernetes distribution based on and used by Amazon Elastic Kubernetes Service (EKS) to create reliable and secure Kubernetes clusters.
Shell
1,263
star
37

eks-charts

Amazon EKS Helm chart repository
Mustache
1,184
star
38

s2n-quic

An implementation of the IETF QUIC protocol
Rust
1,152
star
39

aws-toolkit-vscode

CodeWhisperer, CodeCatalyst, Local Lambda debug, SAM/CFN syntax, ECS Terminal, AWS resources
TypeScript
1,150
star
40

opsworks-cookbooks

Chef Cookbooks for the AWS OpsWorks Service
Ruby
1,058
star
41

aws-codebuild-docker-images

Official AWS CodeBuild repository for managed Docker images http://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref.html
Dockerfile
1,032
star
42

amazon-ssm-agent

An agent to enable remote management of your EC2 instances, on-premises servers, or virtual machines (VMs).
Go
975
star
43

aws-iot-device-sdk-js

SDK for connecting to AWS IoT from a device using JavaScript/Node.js
JavaScript
957
star
44

aws-iot-device-sdk-embedded-C

SDK for connecting to AWS IoT from a device using embedded C.
C
926
star
45

aws-health-tools

The samples provided in AWS Health Tools can help users to build automation and customized alerting in response to AWS Health events.
Python
887
star
46

aws-graviton-getting-started

Helping developers to use AWS Graviton2, Graviton3, and Graviton4 processors which power the 6th, 7th, and 8th generation of Amazon EC2 instances (C6g[d], M6g[d], R6g[d], T4g, X2gd, C6gn, I4g, Im4gn, Is4gen, G5g, C7g[d][n], M7g[d], R7g[d], R8g).
Python
850
star
47

aws-app-mesh-examples

AWS App Mesh is a service mesh that you can use with your microservices to manage service to service communication.
Shell
844
star
48

deep-learning-containers

AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet.
Python
800
star
49

aws-parallelcluster

AWS ParallelCluster is an AWS supported Open Source cluster management tool to deploy and manage HPC clusters in the AWS cloud.
Python
782
star
50

aws-lambda-runtime-interface-emulator

Go
771
star
51

aws-toolkit-jetbrains

AWS Toolkit for JetBrains - a plugin for interacting with AWS from JetBrains IDEs
Kotlin
735
star
52

graph-notebook

Library extending Jupyter notebooks to integrate with Apache TinkerPop, openCypher, and RDF SPARQL.
Jupyter Notebook
706
star
53

aws-iot-device-sdk-python

SDK for connecting to AWS IoT from a device using Python.
Python
670
star
54

amazon-chime-sdk-js

A JavaScript client library for integrating multi-party communications powered by the Amazon Chime service.
TypeScript
655
star
55

amazon-ec2-instance-selector

A CLI tool and go library which recommends instance types based on resource criteria like vcpus and memory
Go
642
star
56

studio-lab-examples

Example notebooks for working with SageMaker Studio Lab. Sign up for an account at the link below!
Jupyter Notebook
625
star
57

aws-secretsmanager-agent

The AWS Secrets Manager Agent is a local HTTP service that you can install and use in your compute environments to read secrets from Secrets Manager and cache them in memory.
Rust
584
star
58

event-ruler

Event Ruler is a Java library that allows matching many thousands of Events per second to any number of expressive and sophisticated rules.
Java
564
star
59

aws-sdk-rails

Official repository for the aws-sdk-rails gem, which integrates the AWS SDK for Ruby with Ruby on Rails.
Ruby
554
star
60

aws-mwaa-local-runner

This repository provides a command line interface (CLI) utility that replicates an Amazon Managed Workflows for Apache Airflow (MWAA) environment locally.
Shell
553
star
61

amazon-eks-pod-identity-webhook

Amazon EKS Pod Identity Webhook
Go
534
star
62

aws-lambda-java-libs

Official mirror for interface definitions and helper classes for Java code running on the AWS Lambda platform.
C++
518
star
63

aws-lambda-base-images

506
star
64

aws-appsync-community

The AWS AppSync community
HTML
495
star
65

sagemaker-training-toolkit

Train machine learning models within a 🐳 Docker container using 🧠 Amazon SageMaker.
Python
493
star
66

dotnet

GitHub home for .NET development on AWS
487
star
67

aws-cdk-rfcs

RFCs for the AWS CDK
JavaScript
476
star
68

aws-sam-cli-app-templates

Python
472
star
69

aws-elastic-beanstalk-cli-setup

Simplified EB CLI installation mechanism.
Python
453
star
70

amazon-cloudwatch-agent

CloudWatch Agent enables you to collect and export host-level metrics and logs on instances running Linux or Windows server.
Go
403
star
71

secrets-store-csi-driver-provider-aws

The AWS provider for the Secrets Store CSI Driver allows you to fetch secrets from AWS Secrets Manager and AWS Systems Manager Parameter Store, and mount them into Kubernetes pods.
Go
393
star
72

amazon-braket-examples

Example notebooks that show how to apply quantum computing in Amazon Braket.
Python
376
star
73

aws-for-fluent-bit

The source of the amazon/aws-for-fluent-bit container image
Shell
375
star
74

aws-pdk

The AWS PDK provides building blocks for common patterns together with development tools to manage and build your projects.
TypeScript
361
star
75

aws-extensions-for-dotnet-cli

Extensions to the dotnet CLI to simplify the process of building and publishing .NET Core applications to AWS services
C#
346
star
76

aws-sdk-php-symfony

PHP
346
star
77

aws-app-mesh-roadmap

AWS App Mesh is a service mesh that you can use with your microservices to manage service to service communication
344
star
78

aws-lambda-builders

Python library to compile, build & package AWS Lambda functions for several runtimes & framework
Python
337
star
79

aws-iot-device-sdk-python-v2

Next generation AWS IoT Client SDK for Python using the AWS Common Runtime
Python
335
star
80

constructs

Define composable configuration models through code
TypeScript
332
star
81

pg_tle

Framework for building trusted language extensions for PostgreSQL
C
329
star
82

graph-explorer

React-based web application that enables users to visualize both property graph and RDF data and explore connections between data without having to write graph queries.
TypeScript
321
star
83

aws-codedeploy-agent

Host Agent for AWS CodeDeploy
Ruby
316
star
84

aws-sdk-ruby-record

Official repository for the aws-record gem, an abstraction for Amazon DynamoDB.
Ruby
313
star
85

aws-ops-wheel

The AWS Ops Wheel is a randomizer that biases for options that haven’t come up recently; you can also outright cheat and specify the next result to be generated.
JavaScript
308
star
86

sagemaker-inference-toolkit

Serve machine learning models within a 🐳 Docker container using 🧠 Amazon SageMaker.
Python
303
star
87

efs-utils

Utilities for Amazon Elastic File System (EFS)
Python
286
star
88

amazon-ivs-react-native-player

A React Native wrapper for the Amazon IVS iOS and Android player SDKs.
TypeScript
286
star
89

sagemaker-spark

A Spark library for Amazon SageMaker.
Scala
282
star
90

apprunner-roadmap

This is the public roadmap for AWS App Runner.
280
star
91

aws-xray-sdk-go

AWS X-Ray SDK for the Go programming language.
Go
274
star
92

aws-toolkit-eclipse

(End of life: May 31, 2023) AWS Toolkit for Eclipse
Java
273
star
93

elastic-beanstalk-roadmap

AWS Elastic Beanstalk roadmap
272
star
94

aws-logging-dotnet

.NET Libraries for integrating Amazon CloudWatch Logs with popular .NET logging libraries
C#
271
star
95

sagemaker-tensorflow-training-toolkit

Toolkit for running TensorFlow training scripts on SageMaker. Dockerfiles used for building SageMaker TensorFlow Containers are at https://github.com/aws/deep-learning-containers.
Python
270
star
96

aws-lc-rs

aws-lc-rs is a cryptographic library using AWS-LC for its cryptographic operations. The library strives to be API-compatible with the popular Rust library named ring.
Rust
263
star
97

elastic-load-balancing-tools

AWS Elastic Load Balancing Tools
Java
262
star
98

aws-step-functions-data-science-sdk-python

Step Functions Data Science SDK for building machine learning (ML) workflows and pipelines on AWS
Python
261
star
99

amazon-braket-sdk-python

A Python SDK for interacting with quantum devices on Amazon Braket
Python
254
star
100

aws-xray-sdk-node

The official AWS X-Ray SDK for Node.js.
JavaScript
248
star