• Stars
    star
    282
  • Rank 141,036 (Top 3 %)
  • Language
    Scala
  • License
    Apache License 2.0
  • Created over 6 years ago
  • Updated 12 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A Spark library for Amazon SageMaker.

SageMaker

SageMaker Spark

codecov

SageMaker Spark is an open source Spark library for Amazon SageMaker. With SageMaker Spark you construct Spark ML Pipelines using Amazon SageMaker stages. These pipelines interleave native Spark ML stages and stages that interact with SageMaker training and model hosting.

With SageMaker Spark, you can train on Amazon SageMaker from Spark DataFrames using Amazon-provided ML algorithms like K-Means clustering or XGBoost, and make predictions on DataFrames against SageMaker endpoints hosting your trained models, and, if you have your own ML algorithms built into SageMaker compatible Docker containers, you can use SageMaker Spark to train and infer on DataFrames with your own algorithms -- all at Spark scale.

Table of Contents

Getting SageMaker Spark

Scala

SageMaker Spark for Scala is available in the Maven central repository:

<dependency>
    <groupId>com.amazonaws</groupId>
    <artifactId>sagemaker-spark_2.11</artifactId>
    <version>spark_2.2.0-1.0</version>
</dependency>

Or, if your project depends on Spark 2.1:

<dependency>
    <groupId>com.amazonaws</groupId>
    <artifactId>sagemaker-spark_2.11</artifactId>
    <version>spark_2.1.1-1.0</version>
</dependency>

You can also build SageMaker Spark from source. See sagemaker-spark-sdk for more on building SageMaker Spark from source.

Python

See the sagemaker-pyspark-sdk for more on installing and running SageMaker PySpark.

Running SageMaker Spark

SageMaker Spark depends on hadoop-aws-2.8.1. To run Spark applications that depend on SageMaker Spark, you need to build Spark with Hadoop 2.8. However, if you are running Spark applications on EMR, you can use Spark built with Hadoop 2.7.

Apache Spark currently distributes binaries built against Hadoop-2.7, but not 2.8. See the Spark documentation for more on building Spark with Hadoop 2.8.

SageMaker Spark needs to be added to both the driver and executor classpaths.

Running SageMaker Spark Applications with spark-shell or spark-submit

You can submit SageMaker Spark and the AWS Java Client as dependencies with the "--jars" flag, or take a dependency on SageMaker Spark in Maven using the "--package" flag.

  1. Install Hadoop-2.8. https://hadoop.apache.org/docs/r2.8.0/
  2. Build Spark 2.2 with Hadoop-2.8. The Spark documentation has guidance on building Spark with your own Hadoop installation.
  3. Run spark-shell or spark-submit with the --packages flag:
spark-shell --packages com.amazonaws:sagemaker-spark_2.11:spark_2.2.0-1.0

Running SageMaker Spark Applications on EMR

You can run SageMaker Spark applications on an EMR cluster just like any other Spark application by submitting your Spark application jar and the SageMaker Spark dependency jars with the --jars or --packages flags.

SageMaker Spark is pre-installed on EMR releases since 5.11.0. You can run your SageMaker Spark application on EMR by submitting your Spark application jar and any additional dependencies your Spark application uses.

SageMaker Spark applications have also been verified to be compatible with EMR-5.6.0 (which runs Spark 2.1) and EMR-5-8.0 (which runs Spark 2.2). When submitting your Spark application to an earlier EMR release, use the --packages flag to depend on a recent version of the AWS Java SDK:

spark-submit
  --packages com.amazonaws:aws-java-sdk:1.11.613 \
  --deploy-mode cluster \
  --conf spark.driver.userClassPathFirst=true \
  --conf spark.executor.userClassPathFirst=true \
  --jars SageMakerSparkApplicationJar.jar,...
  ...

The spark.driver.userClassPathFirst=true and spark.executor.userClassPathFirst=true properties are required so that the Spark cluster will use the AWS Java SDK dependencies with SageMaker, rather than the AWS Java SDK installed on these earlier EMR clusters.

For more on running Spark application on EMR, see the EMR Documentation on submitting a step.

Python

See the sagemaker-pyspark-sdk for more on installing and running SageMaker PySpark.

S3 FileSystem Schemes

EMR allows you to read and write data using the EMR FileSystem (EMRFS), accessed through Spark with "s3://":

spark.read.format("libsvm").load("s3://my-bucket/my-prefix")

In other execution environments, you can use the S3A schema to use the S3A FileSystem "s3a://" to read and write data:

spark.read.format("libsvm").load("s3a://my-bucket/my-prefix")

In the code examples in this README, we use "s3://" to use the EMRFS, or "s3a://" to use the S3A system, which is recommended over "s3n://".

API Documentation

You can view the Scala API Documentation for SageMaker Spark here.

You can view the PySpark API Documentation for SageMaker Spark here.

Getting Started: K-Means Clustering on SageMaker with SageMaker Spark SDK

This example walks through using SageMaker Spark to train on a Spark DataFrame using a SageMaker-provided algorithm, host the resulting model on SageMaker Spark, and making predictions on a Spark DataFrame using that hosted model.

We'll cluster handwritten digits in the MNIST dataset, which we've made available in LibSVM format at s3://sagemaker-sample-data-us-east-1/spark/mnist/train/mnist_train.libsvm.

You can start a Spark shell with SageMaker Spark

spark-shell --packages com.amazonaws:sagemaker-spark_2.11:spark_2.1.1-1.0
  1. Create your Spark Session and load your training and test data into DataFrames:
val spark = SparkSession.builder.getOrCreate

// load mnist data as a dataframe from libsvm. replace this region with your own.
val region = "us-east-1"
val trainingData = spark.read.format("libsvm")
  .option("numFeatures", "784")
  .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/")

val testData = spark.read.format("libsvm")
  .option("numFeatures", "784")
  .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/")

The DataFrame consists of a column named "label" of Doubles, indicating the digit for each example, and a column named "features" of Vectors:

trainingData.show

+-----+--------------------+
|label|            features|
+-----+--------------------+
|  5.0|(784,[152,153,154...|
|  0.0|(784,[127,128,129...|
|  4.0|(784,[160,161,162...|
|  1.0|(784,[158,159,160...|
|  9.0|(784,[208,209,210...|
|  2.0|(784,[155,156,157...|
|  1.0|(784,[124,125,126...|
|  3.0|(784,[151,152,153...|
|  1.0|(784,[152,153,154...|
|  4.0|(784,[134,135,161...|
|  3.0|(784,[123,124,125...|
|  5.0|(784,[216,217,218...|
|  3.0|(784,[143,144,145...|
|  6.0|(784,[72,73,74,99...|
|  1.0|(784,[151,152,153...|
|  7.0|(784,[211,212,213...|
|  2.0|(784,[151,152,153...|
|  8.0|(784,[159,160,161...|
|  6.0|(784,[100,101,102...|
|  9.0|(784,[209,210,211...|
+-----+--------------------+
  1. Construct a KMeansSageMakerEstimator, which extends SageMakerEstimator, which is a Spark Estimator. You need to pass in an Amazon SageMaker-compatible IAM Role that Amazon SageMaker will use to make AWS service calls on your behalf (or configure SageMaker Spark to get this from Spark Config). Consult the API Documentation for a complete list of parameters.

In this example, we are setting the "k" and "feature_dim" hyperparameters, corresponding to the number of clusters we want and to the number of dimensions in our training dataset, respectively.

// Replace this IAM Role ARN with your own.
val roleArn = "arn:aws:iam::account-id:role/rolename"

val estimator = new KMeansSageMakerEstimator(
  sagemakerRole = IAMRole(roleArn),
  trainingInstanceType = "ml.p2.xlarge",
  trainingInstanceCount = 1,
  endpointInstanceType = "ml.c4.xlarge",
  endpointInitialInstanceCount = 1)
  .setK(10).setFeatureDim(784)
  1. To train and host your model, call fit() on your training DataFrame:
val model = estimator.fit(trainingData)

What happens in this call to fit()?

  1. SageMaker Spark serializes your DataFrame and uploads the serialized training data to S3. For the K-Means algorithm, SageMaker Spark converts the DataFrame to the Amazon Record format. SageMaker Spark will create an S3 bucket for you that your IAM role can access if you do not provide an S3 Bucket in the constructor.

  2. SageMaker Spark sends a CreateTrainingJobRequest to Amazon SageMaker to run a Training Job with one p2.xlarge on the data in S3, configured with the values you pass in to the SageMakerEstimator, and polls for completion of the Training Job. In this example, we are sending a CreateTrainingJob request to run a k-means clustering Training Job on Amazon SageMaker on serialized data we uploaded from your DataFrame. When training completes, the Amazon SageMaker service puts a serialized model in an S3 bucket you own (or the default bucket created by SageMaker Spark).

  3. After training completes, SageMaker Spark sends a CreateModelRequest, a CreateEndpointConfigRequest, and a CreateEndpointRequest and polls for completion, each configured with the values you pass in to the SageMakerEstimator. This Endpoint will initially be backed by one c4.xlarge.

  4. To make inferences using the Endpoint hosting our model, call transform() on the SageMakerModel returned by fit().

val transformedData = model.transform(testData)
transformedData.show
+-----+--------------------+-------------------+---------------+
|label|            features|distance_to_cluster|closest_cluster|
+-----+--------------------+-------------------+---------------+
|  5.0|(784,[152,153,154...|  1767.897705078125|            4.0|
|  0.0|(784,[127,128,129...|  1392.157470703125|            5.0|
|  4.0|(784,[160,161,162...| 1671.5711669921875|            9.0|
|  1.0|(784,[158,159,160...| 1182.6082763671875|            6.0|
|  9.0|(784,[208,209,210...| 1390.4002685546875|            0.0|
|  2.0|(784,[155,156,157...|  1713.988037109375|            1.0|
|  1.0|(784,[124,125,126...| 1246.3016357421875|            2.0|
|  3.0|(784,[151,152,153...|  1753.229248046875|            4.0|
|  1.0|(784,[152,153,154...|  978.8394165039062|            2.0|
|  4.0|(784,[134,135,161...|  1623.176513671875|            3.0|
|  3.0|(784,[123,124,125...|  1533.863525390625|            4.0|
|  5.0|(784,[216,217,218...|  1469.357177734375|            6.0|
|  3.0|(784,[143,144,145...|  1736.765869140625|            4.0|
|  6.0|(784,[72,73,74,99...|   1473.69384765625|            8.0|
|  1.0|(784,[151,152,153...|    944.88720703125|            2.0|
|  7.0|(784,[211,212,213...| 1285.9071044921875|            3.0|
|  2.0|(784,[151,152,153...| 1635.0125732421875|            1.0|
|  8.0|(784,[159,160,161...| 1436.3162841796875|            6.0|
|  6.0|(784,[100,101,102...| 1499.7366943359375|            7.0|
|  9.0|(784,[209,210,211...| 1364.6319580078125|            6.0|
+-----+--------------------+-------------------+---------------+

In this call to transform(), the SageMakerModel serializes chunks of the input DataFrame and sends them to the Endpoint using the SageMakerRuntime InvokeEndpoint API. The SageMakerModel deserializes the Endpoint's responses, which contain predictions, and appends the prediction columns to the input DataFrame.

Example: Using SageMaker Spark with Any SageMaker Algorithm

The SageMakerEstimator is an org.apache.spark.ml.Estimator that trains a model on Amazon SageMaker.

SageMaker Spark provides several classes that extend SageMakerEstimator to run particular algorithms, like KMeansSageMakerEstimator to run the SageMaker-provided k-means algorithm, or XGBoostSageMakerEstimator to run the SageMaker-provided XGBoost algorithm. These classes are just SageMakerEstimators with certain default values passed in. You can use SageMaker Spark with any algorithm that runs on Amazon SageMaker by creating a SageMakerEstimator.

Instead of creating a KMeansSageMakerEstimator, you can create an equivalent SageMakerEstimator:

val estimator = new SageMakerEstimator(
  trainingImage =
    "382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
  modelImage =
    "382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
  requestRowSerializer = new ProtobufRequestRowSerializer(),
  responseRowDeserializer = new KMeansProtobufResponseRowDeserializer(),
  hyperParameters = Map("k" -> "10", "feature_dim" -> "784"),
  sagemakerRole = IAMRole(roleArn),
  trainingInstanceType = "ml.p2.xlarge",
  trainingInstanceCount = 1,
  endpointInstanceType = "ml.c4.xlarge",
  endpointInitialInstanceCount = 1,
  trainingSparkDataFormat = "sagemaker")
  • trainingImage identifies the Docker registry path to the training image containing your custom code. In this case, this points to the us-east-1 k-means image.
  • modelImage identifies the Docker registry path to the image containing inference code. Amazon SageMaker k-means uses the same image to train and to host trained models.
  • requestRowSerializer implements com.amazonaws.services.sagemaker.sparksdk.transformation.RequestRowSerializer. A RequestRowSerializer serializes org.apache.spark.sql.Rows in the input DataFrame to send them to the model hosted in Amazon SageMaker for inference. This is passed to the SageMakerModel returned by fit. In this case, we pass in a RequestRowSerializer that serializes Rows to the Amazon Record protobuf format. See Serializing and Deserializing for Inference for more information on how SageMaker Spark makes inferences.
  • responseRowDeserializer Implements com.amazonaws.services.sagemaker.sparksdk.transformation.ResponseRowDeserializer. A ResponseRowDeserializer deserializes responses containing predictions from the Endpoint back into columns in a DataFrame.
  • hyperParameters is a Map[String, String] that the trainingImage will use to set training hyperparameters.
  • trainingSparkDataFormat specifies the data format that Spark uses when uploading training data from a DataFrame to S3.

SageMaker Spark needs the trainingSparkDataFormat to tell Spark how to write the DataFrame to S3 for the trainingImage to train on. In this example, "sagemaker" tells Spark to write the data as RecordIO-encoded Amazon Records, but your own algorithm may take another data format. You can pass in any format that Spark supports as long as your trainingImage can train using that data format, such as "csv", "parquet", "com.databricks.spark.csv", or "libsvm."

SageMaker Spark also needs a RequestRowSerializer to serialize Spark Rows to a data format the modelImage can deserialize, and a ResponseRowDeserializer to deserialize responses that contain predictions from the modelImage back into Spark Rows. See Serializing and Deserializing for Inference for more details.

Example: Using SageMakerEstimator and SageMakerModel in a Spark Pipeline

SageMakerEstimators and SageMakerModels can be used in Pipelines. In this example, we run org.apache.spark.ml.feature.PCA on our Spark cluster, then train and infer using Amazon SageMaker's K-Means on the output column from PCA:

val pcaEstimator = new PCA()
  .setInputCol("features")
  .setOutputCol("projectedFeatures")
  .setK(50)

val kMeansSageMakerEstimator = new KMeansSageMakerEstimator(
  sagemakerRole = IAMRole(roleArn),
  requestRowSerializer =
    new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures"),
  trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures"),
  trainingInstanceType = "ml.p2.xlarge",
  trainingInstanceCount = 1,
  endpointInstanceType = "ml.c4.xlarge",
  endpointInitialInstanceCount = 1)
  .setK(10).setFeatureDim(50)

val pipeline = new Pipeline().setStages(Array(pcaEstimator, kMeansSageMakerEstimator))

// train
val pipelineModel = pipeline.fit(trainingData)

val transformedData = pipelineModel.transform(testData)
transformedData.show()

+-----+--------------------+--------------------+-------------------+---------------+
|label|            features|   projectedFeatures|distance_to_cluster|closest_cluster|
+-----+--------------------+--------------------+-------------------+---------------+
|  5.0|(784,[152,153,154...|[880.731433034386...|     1500.470703125|            0.0|
|  0.0|(784,[127,128,129...|[1768.51722024166...|      1142.18359375|            4.0|
|  4.0|(784,[160,161,162...|[704.949236329314...|  1386.246826171875|            9.0|
|  1.0|(784,[158,159,160...|[-42.328192193771...| 1277.0736083984375|            5.0|
|  9.0|(784,[208,209,210...|[374.043902028333...|   1211.00927734375|            3.0|
|  2.0|(784,[155,156,157...|[941.267714528850...|  1496.157958984375|            8.0|
|  1.0|(784,[124,125,126...|[30.2848596410594...| 1327.6766357421875|            5.0|
|  3.0|(784,[151,152,153...|[1270.14374062052...| 1570.7674560546875|            0.0|
|  1.0|(784,[152,153,154...|[-112.10792566485...|     1037.568359375|            5.0|
|  4.0|(784,[134,135,161...|[452.068280676606...| 1165.1236572265625|            3.0|
|  3.0|(784,[123,124,125...|[610.596447285397...|  1325.953369140625|            7.0|
|  5.0|(784,[216,217,218...|[142.959601818422...| 1353.4930419921875|            5.0|
|  3.0|(784,[143,144,145...|[1036.71862533658...| 1460.4315185546875|            7.0|
|  6.0|(784,[72,73,74,99...|[996.740157435754...| 1159.8631591796875|            2.0|
|  1.0|(784,[151,152,153...|[-107.26076167417...|   960.963623046875|            5.0|
|  7.0|(784,[211,212,213...|[619.771820430940...|   1245.13623046875|            6.0|
|  2.0|(784,[151,152,153...|[850.152101817161...|  1304.437744140625|            8.0|
|  8.0|(784,[159,160,161...|[370.041887230547...| 1192.4781494140625|            0.0|
|  6.0|(784,[100,101,102...|[546.674328209335...|    1277.0908203125|            2.0|
|  9.0|(784,[209,210,211...|[-29.259112927426...| 1245.8182373046875|            6.0|
+-----+--------------------+--------------------+-------------------+---------------+
  • requestRowSerializer = new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures") tells the SageMakerModel returned by fit() to infer on the features in the "projectedFeatures" column
  • trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures") tells the SageMakerProtobufWriter that Spark is using to write the DataFrame as format "sagemaker" to serialize the "projectedFeatures" column when writing Amazon Records for training.

Example: Using Multiple SageMakerEstimators and SageMakerModels in a Spark Pipeline

We can use multiple SageMakerEstimators and SageMakerModels in a pipeline. Here, we use SageMaker's PCA algorithm to reduce a dataset with 50 dimensions to a dataset with 20 dimensions, then use SageMaker's K-Means algorithm to train on the 20-dimension data.

val pcaEstimator = new PCASageMakerEstimator(sagemakerRole = IAMRole(sagemakerRole),
  trainingInstanceType = "ml.p2.xlarge",
  trainingInstanceCount = 1,
  endpointInstanceType = "ml.c4.xlarge",
  endpointInitialInstanceCount = 1
  responseRowDeserializer = new PCAProtobufResponseRowDeserializer(
    projectionColumnName = "projectionDim20"),
  trainingInputS3DataPath = S3DataPath(trainingBucket, inputPrefix),
  trainingOutputS3DataPath = S3DataPath(trainingBucket, outputPrefix),
  endpointCreationPolicy = EndpointCreationPolicy.CREATE_ON_TRANSFORM)
  .setNumComponents(20).setFeatureDim(50)

val kmeansEstimator = new KMeansSageMakerEstimator(sagemakerRole = IAMRole(sagemakerRole),
  trainingInstanceType = "ml.p2.xlarge",
  trainingInstanceCount = 1,
  endpointInstanceType = "ml.c4.xlarge",
  endpointInitialInstanceCount = 1
  trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectionDim20"),
  requestRowSerializer = new ProtobufRequestRowSerializer(
    featuresColumnName = "projectionDim20"),
  responseRowDeserializer = new KMeansProtobufResponseRowDeserializer(),
  trainingInputS3DataPath = S3DataPath(trainingBucket, inputPrefix),
  trainingOutputS3DataPath = S3DataPath(trainingBucket, outputPrefix),
  endpointCreationPolicy = EndpointCreationPolicy.CREATE_ON_TRANSFORM)
  .setK(10).setFeatureDim(20)

val pipeline = new Pipeline().setStages(Array(pcaEstimator, kmeansEstimator))

val model = pipeline.fit(dataset)

// For expediency, transforming the training dataset:
val transformedData = model.transform(dataset)
transformedData.show()

+-----+--------------------+--------------------+-------------------+---------------+
|label|            features|     projectionDim20|distance_to_cluster|closest_cluster|
+-----+--------------------+--------------------+-------------------+---------------+
|  1.0|[-0.7927307,-11.2...|[5.50362682342529...|  45.03189468383789|            1.0|
|  1.0|[-3.762671,-5.853...|[-2.1558122634887...|  41.79889678955078|            1.0|
|  1.0|[-2.0988898,-2.40...|[4.53881502151489...| 50.824703216552734|            1.0|
|  1.0|[-2.81075,-3.6481...|[0.97894239425659...|  52.78211975097656|            1.0|
|  1.0|[-2.14356,-4.0369...|[2.25758934020996...|  48.99141311645508|            1.0|
|  1.0|[-5.3773708,-15.3...|[-3.2523036003112...|  21.99374771118164|            1.0|
|  1.0|[-1.0369565,-16.5...|[-17.643878936767...| 29.127044677734375|            3.0|
|  1.0|[-2.019725,-3.226...|[1.41068196296691...|   51.7830696105957|            1.0|
|  1.0|[-4.3821997,-0.98...|[-0.8335087299346...| 53.921058654785156|            1.0|
|  1.0|[-7.075208,-34.31...|[11.4329795837402...|  35.12031173706055|            3.0|
|  1.0|[-3.90454,-4.8401...|[-1.4304646253585...|  50.00594711303711|            1.0|
|  1.0|[0.9607103,-13.50...|[1.13785743713378...|  28.71956443786621|            1.0|
|  1.0|[-4.5025017,-15.2...|[2.66747045516967...| 25.419822692871094|            1.0|
|  1.0|[0.041773,-27.148...|[7.58121681213378...| 30.303693771362305|            3.0|
|  1.0|[-10.1477266,-39....|[-12.086886405944...|   35.9030647277832|            2.0|
|  1.0|[-3.09143,-6.4892...|[1.79180252552032...|  39.34271240234375|            1.0|
|  1.0|[-13.5285917,-32....|[7.62783145904541...| 35.040035247802734|            2.0|
|  1.0|[-4.189806,-16.04...|[1.41141772270202...| 25.123626708984375|            1.0|
|  1.0|[-12.77831508,-62...|[0.11281073093414...|  63.91242599487305|            2.0|
|  1.0|[-9.3934507,-12.5...|[-9.4945802688598...| 20.913305282592773|            1.0|
+-----+--------------------+--------------------+-------------------+---------------+
  • responseRowDeserializer = new PCAProtobufResponseRowDeserializer( projectionColumnName = "projectionDim20") tells the SageMakerModel attached to the PCA endpoint to deserialize responses (which contain the lower-dimensional projections of the features vectors) into the column named "projectionDim20"
  • endpointCreationPolicy = EndpointCreationPolicy.CREATE_ON_TRANSFORM tells the SageMakerEstimator to delay SageMaker Endpoint creation until it is needed to transform a DataFrame.
  • trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectionDim20"), requestRowSerializer = new ProtobufRequestRowSerializer( featuresColumnName = "projectionDim20") these lines tell the KMeansSageMakerEstimator to respectively train and infer on the features in the "projectionDim20" column.

Example: Creating a SageMakerModel

SageMaker Spark supports attaching SageMakerModels to an existing SageMaker endpoint, or to an Endpoint created by reference to model data in S3, or to a previously completed Training Job.

This allows you to use SageMaker Spark just for model hosting and inference on Spark-scale DataFrames without running a new Training Job.

SageMakerModel From an Endpoint

You can attach a SageMakerModel to an endpoint that has already been created. Supposing an endpoint with name "my-endpoint-name" is already in service and hosting a SageMaker K-Means model:

val model = SageMakerModel
  .fromEndpoint(endpointName = "my-endpoint-name",
                requestRowSerializer = new ProtobufRequestRowSerializer(
                  featuresColumnName = "MyFeaturesColumn"),
                responseRowDeserializer = new KMeansProtobufResponseRowDeserializer(
                  distanceToClusterColumnName = "DistanceToCluster",
                  closestClusterColumnName = "ClusterLabel"
                ))

This SageMakerModel will, upon a call to transform(), serialize the column named "MyFeaturesColumn" for inference, and append the columns "DistanceToCluster" and "ClusterLabel" to the DataFrame.

SageMakerModel From Model Data in S3

You can create a SageMakerModel and an Endpoint by referring directly to your model data in S3:

val model = SageMakerModel
  .fromModelS3Path(modelPath = "s3://my-model-bucket/my-model-data/model.tar.gz",
                   modelExecutionRoleARN = "arn:aws:iam::account-id:role/rolename"
                   modelImage = 382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
                   endpointInstanceType = "ml.c4.xlarge",
                   endpointInitialInstanceCount = 1
                   requestRowSerializer = new ProtobufRequestRowSerializer(),
                   responseRowDeserializer = new KMeansProtobufResponseRowDeserializer()
                  )

SageMakerModel From a Previously Completed Training Job

You can create a SageMakerModel and an Endpoint by referring to a previously-completed training job:

val model = SageMakerModel
  .fromTrainingJob(trainingJobName = "my-training-job-name",
                   modelExecutionRoleARN = "arn:aws:iam::account-id:role/rolename"
                   modelImage = 382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
                   endpointInstanceType = "ml.c4.xlarge",
                   endpointInitialInstanceCount = 1
                   requestRowSerializer = new ProtobufRequestRowSerializer(),
                   responseRowDeserializer = new KMeansProtobufResponseRowDeserializer()
                  )

Example: Tearing Down Amazon SageMaker Endpoints

SageMaker Spark provides a utility for deleting Endpoints created by a SageMakerModel:

val sagemakerClient = AmazonSageMakerClientBuilder.defaultClient
val cleanup = new SageMakerResourceCleanup(sagemakerClient)
cleanup.deleteResources(model.getCreatedResources)

Configuring an IAM Role

SageMaker Spark allows you to add your IAM Role ARN to your Spark Config so that you don't have to keep passing in IAMRole("arn:aws:iam::account-id:role/rolename").

Add an entry to your Spark Config with key com.amazonaws.services.sagemaker.sparksdk.sagemakerrole whose value is your Amazon SageMaker-compatible IAM Role. SageMakerEstimator will look for this role if it is not supplied in the constructor.

SageMaker Spark: In-Depth

The Amazon Record format

KMeansSageMakerEstimator, PCASageMakerEstimator, and LinearLearnerSageMakerEstimator all serialize DataFrames to the Amazon Record protobuf format with each Record encoded in RecordIO. They do this by passing in "sagemaker" to the trainingSparkDataFormat constructor argument, which configures Spark to use the SageMakerProtobufWriter to serialize Spark DataFrames.

Writing a DataFrame using the "sagemaker" format serializes a column named "label", expected to contain Doubles, and a column named "features", expected to contain a Sparse or Dense org.apache.mllib.linalg.Vector. If the features column contains a SparseVector, SageMaker Spark sparsely-encodes the Vector into the Amazon Record. If the features column contains a DenseVector, SageMaker Spark densely-encodes the Vector into the Amazon Record.

You can choose which columns the SageMakerEstimator chooses as its "label" and "features" columns by passing in a trainingSparkDataFormatOptions Map[String, String] with keys "labelColumnName" and "featuresColumnName" and with values corresponding to the names of your chosen label and features columns.

You can also write Amazon Records using SageMaker Spark by using the "sagemaker" format directly:

myDataFrame.write
    .format("sagemaker")
    .option("labelColumnName", "myLabelColumn")
    .option("featuresColumnName", "myFeaturesColumn")
    .save("s3://my-s3-bucket/my-s3-prefix")

By default, SageMakerEstimator deletes the RecordIO-encoded Amazon Records in S3 following training on Amazon SageMaker. You can choose to allow the data to persist in S3 by passing in deleteStagingDataAfterTraining = true to SageMakerEstimator.

See the AWS Documentation on Amazon Records for more information on Amazon Records.

Serializing and Deserializing for Inference

SageMakerEstimator.fit() returns a SageMakerModel, which transforms a DataFrame by calling InvokeEndpoint on an Amazon SageMaker Endpoint. InvokeEndpointRequests carry serialized Rows as their payload.Rows in the DataFrame are serialized for predictions against an Endpoint using a RequestRowSerializer. Responses from an Endpoint containing predictions are deserialized into Spark Rows and appended as columns in a DataFrame using a ResponseRowDeserializer.

Internally, SageMakerModel.transform calls mapPartitions to distribute the work of serializing Spark Rows, constructing and sending InvokeEndpointRequests to an Endpoint, and deserializing InvokeEndpointResponses across a Spark cluster. Because each InvokeEndpointRequest can carry only 5MB, each Spark partition creates a com.amazonaws.services.sagemaker.sparksdk.transformation.util.RequestBatchIterator to iterate over its partition, sending prediction requests to the Endpoint in 5MB increments.

RequestRowSerializer.serializeRow() converts a Row to an Array[Byte]. The RequestBatchIterator appends these byte arrays to form the request body of an InvokeEndpointRequest.

For example, the com.amazonaws.services.sagemaker.sparksdk.transformation.ProtobufRequestRowSerializer creates one RecordIO-encoded Amazon Record per input row by serializing the "features" column in each row, and wrapping each Amazon Record in the RecordIO header.

ResponseRowDeserializer.deserializeResponse() converts an Array[Byte] containing predictions from an Endpoint to an Iterator[Row]to appends columns containing these predictions to the DataFrame being transformed by the SageMakerModel.

For comparison, SageMaker's XGBoost uses LibSVM-formatted data for inference (as well as training), and responds with a comma-delimited list of predictions. Accordingly, SageMaker Spark uses com.amazonaws.services.sagemaker.sparksdk.transformation.LibSVMRequestRowSerializer to serialize rows into LibSVM-formatted data, and uses com.amazonaws.services.sagemaker.sparksdk.transformation.XGBoostCSVResponseRowDeserializer to deserialize the response into a column of predictions.

To support your own model image's data formats for inference, you can implement your own RequestRowSerializer and ResponseRowDeserializer.

License

SageMaker Spark is licensed under Apache-2.0.

More Repositories

1

aws-cli

Universal Command Line Interface for Amazon Web Services
Python
14,304
star
2

aws-cdk

The AWS Cloud Development Kit is a framework for defining cloud infrastructure in code
JavaScript
10,440
star
3

chalice

Python Serverless Microframework for AWS
Python
10,191
star
4

amazon-sagemaker-examples

Example ๐Ÿ““ Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using ๐Ÿง  Amazon SageMaker.
Jupyter Notebook
9,297
star
5

serverless-application-model

The AWS Serverless Application Model (AWS SAM) transform is a AWS CloudFormation macro that transforms SAM templates into CloudFormation templates.
Python
9,235
star
6

aws-sdk-js

AWS SDK for JavaScript in the browser and Node.js
JavaScript
7,476
star
7

aws-sam-cli

CLI tool to build, test, debug, and deploy Serverless applications using AWS SAM
Python
6,443
star
8

aws-sdk-php

Official repository of the AWS SDK for PHP (@awsforphp)
PHP
5,886
star
9

containers-roadmap

This is the public roadmap for AWS container services (ECS, ECR, Fargate, and EKS).
Shell
5,119
star
10

karpenter

Karpenter is a Kubernetes Node Autoscaler built for flexibility, performance, and simplicity.
Go
4,615
star
11

s2n-tls

An implementation of the TLS/SSL protocols
C
4,447
star
12

aws-sdk-java

The official AWS SDK for Java 1.x. The AWS SDK for Java 2.x is available here: https://github.com/aws/aws-sdk-java-v2/
4,064
star
13

aws-sdk-pandas

pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, Neptune, OpenSearch, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).
Python
3,537
star
14

aws-lambda-go

Libraries, samples and tools to help Go developers develop AWS Lambda functions.
Go
3,498
star
15

aws-sdk-ruby

The official AWS SDK for Ruby.
Ruby
3,462
star
16

copilot-cli

The AWS Copilot CLI is a tool for developers to build, release and operate production ready containerized applications on AWS App Runner or Amazon ECS on AWS Fargate.
Go
3,274
star
17

amazon-freertos

DEPRECATED - See README.md
C
2,535
star
18

aws-sdk-js-v3

Modularized AWS SDK for JavaScript.
TypeScript
2,476
star
19

jsii

jsii allows code in any language to naturally interact with JavaScript classes. It is the technology that enables the AWS Cloud Development Kit to deliver polyglot libraries from a single codebase!
TypeScript
2,371
star
20

aws-sdk-go-v2

AWS SDK for the Go programming language.
Go
2,298
star
21

amazon-vpc-cni-k8s

Networking plugin repository for pod networking in Kubernetes using Elastic Network Interfaces on AWS
Go
2,071
star
22

sagemaker-python-sdk

A library for training and deploying machine learning models on Amazon SageMaker
Python
2,038
star
23

amazon-ecs-agent

Amazon Elastic Container Service Agent
Go
2,005
star
24

lumberyard

Amazon Lumberyard is a free AAA game engine deeply integrated with AWS and Twitch โ€“ with full source.
C++
1,965
star
25

aws-sdk-net

The official AWS SDK for .NET. For more information on the AWS SDK for .NET, see our web site:
1,945
star
26

eks-anywhere

Run Amazon EKS on your own infrastructure ๐Ÿš€
Go
1,899
star
27

aws-eks-best-practices

A best practices guide for day 2 operations, including operational excellence, security, reliability, performance efficiency, and cost optimization.
Python
1,853
star
28

aws-sdk-java-v2

The official AWS SDK for Java - Version 2
Java
1,822
star
29

aws-sdk-cpp

AWS SDK for C++
1,779
star
30

amazon-ecs-cli

The Amazon ECS CLI enables users to run their applications on ECS/Fargate using the Docker Compose file format, quickly provision resources, push/pull images in ECR, and monitor running applications on ECS/Fargate.
Go
1,725
star
31

aws-sdk-php-laravel

A Laravel 5+ (and 4) service provider for the AWS SDK for PHP
PHP
1,589
star
32

aws-node-termination-handler

Gracefully handle EC2 instance shutdown within Kubernetes
Go
1,443
star
33

serverless-java-container

A Java wrapper to run Spring, Spring Boot, Jersey, and other apps inside AWS Lambda.
Java
1,439
star
34

aws-lambda-dotnet

Libraries, samples and tools to help .NET Core developers develop AWS Lambda functions.
C#
1,430
star
35

aws-fpga

Official repository of the AWS EC2 FPGA Hardware and Software Development Kit
VHDL
1,380
star
36

eks-distro

Amazon EKS Distro (EKS-D) is a Kubernetes distribution based on and used by Amazon Elastic Kubernetes Service (EKS) to create reliable and secure Kubernetes clusters.
Shell
1,263
star
37

aws-toolkit-vscode

CodeWhisperer, CodeCatalyst, Local Lambda debug, SAM/CFN syntax, ECS Terminal, AWS resources
TypeScript
1,150
star
38

eks-charts

Amazon EKS Helm chart repository
Mustache
1,142
star
39

s2n-quic

An implementation of the IETF QUIC protocol
Rust
1,066
star
40

opsworks-cookbooks

Chef Cookbooks for the AWS OpsWorks Service
Ruby
1,058
star
41

aws-codebuild-docker-images

Official AWS CodeBuild repository for managed Docker images http://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref.html
Dockerfile
1,032
star
42

amazon-ssm-agent

An agent to enable remote management of your EC2 instances, on-premises servers, or virtual machines (VMs).
Go
975
star
43

aws-iot-device-sdk-js

SDK for connecting to AWS IoT from a device using JavaScript/Node.js
JavaScript
957
star
44

aws-iot-device-sdk-embedded-C

SDK for connecting to AWS IoT from a device using embedded C.
C
926
star
45

aws-health-tools

The samples provided in AWS Health Tools can help users to build automation and customized alerting in response to AWS Health events.
Python
887
star
46

aws-app-mesh-examples

AWS App Mesh is a service mesh that you can use with your microservices to manage service to service communication.
Shell
844
star
47

deep-learning-containers

AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet.
Python
800
star
48

aws-graviton-getting-started

Helping developers to use AWS Graviton2 and Graviton3 processors which power the 6th and 7th generation of Amazon EC2 instances (C6g[d], M6g[d], R6g[d], T4g, X2gd, C6gn, I4g, Im4gn, Is4gen, G5g, C7g[d][n], M7g[d], R7g[d]).
Python
788
star
49

aws-parallelcluster

AWS ParallelCluster is an AWS supported Open Source cluster management tool to deploy and manage HPC clusters in the AWS cloud.
Python
782
star
50

aws-lambda-runtime-interface-emulator

Go
771
star
51

aws-toolkit-jetbrains

AWS Toolkit for JetBrains - a plugin for interacting with AWS from JetBrains IDEs
Kotlin
723
star
52

aws-iot-device-sdk-python

SDK for connecting to AWS IoT from a device using Python.
Python
670
star
53

graph-notebook

Library extending Jupyter notebooks to integrate with Apache TinkerPop, openCypher, and RDF SPARQL.
Jupyter Notebook
663
star
54

amazon-chime-sdk-js

A JavaScript client library for integrating multi-party communications powered by the Amazon Chime service.
TypeScript
655
star
55

amazon-ec2-instance-selector

A CLI tool and go library which recommends instance types based on resource criteria like vcpus and memory
Go
642
star
56

studio-lab-examples

Example notebooks for working with SageMaker Studio Lab. Sign up for an account at the link below!
Jupyter Notebook
566
star
57

aws-sdk-rails

Official repository for the aws-sdk-rails gem, which integrates the AWS SDK for Ruby with Ruby on Rails.
Ruby
554
star
58

aws-mwaa-local-runner

This repository provides a command line interface (CLI) utility that replicates an Amazon Managed Workflows for Apache Airflow (MWAA) environment locally.
Shell
553
star
59

amazon-eks-pod-identity-webhook

Amazon EKS Pod Identity Webhook
Go
534
star
60

event-ruler

Event Ruler is a Java library that allows matching many thousands of Events per second to any number of expressive and sophisticated rules.
Java
516
star
61

aws-lambda-base-images

506
star
62

aws-lambda-java-libs

Official mirror for interface definitions and helper classes for Java code running on the AWS Lambda platform.
C++
502
star
63

aws-appsync-community

The AWS AppSync community
HTML
495
star
64

dotnet

GitHub home for .NET development on AWS
487
star
65

aws-cdk-rfcs

RFCs for the AWS CDK
JavaScript
476
star
66

sagemaker-training-toolkit

Train machine learning models within a ๐Ÿณ Docker container using ๐Ÿง  Amazon SageMaker.
Python
468
star
67

aws-elastic-beanstalk-cli-setup

Simplified EB CLI installation mechanism.
Python
453
star
68

aws-sam-cli-app-templates

Python
435
star
69

amazon-cloudwatch-agent

CloudWatch Agent enables you to collect and export host-level metrics and logs on instances running Linux or Windows server.
Go
403
star
70

secrets-store-csi-driver-provider-aws

The AWS provider for the Secrets Store CSI Driver allows you to fetch secrets from AWS Secrets Manager and AWS Systems Manager Parameter Store, and mount them into Kubernetes pods.
Go
393
star
71

amazon-braket-examples

Example notebooks that show how to apply quantum computing in Amazon Braket.
Python
376
star
72

aws-for-fluent-bit

The source of the amazon/aws-for-fluent-bit container image
Shell
375
star
73

aws-extensions-for-dotnet-cli

Extensions to the dotnet CLI to simplify the process of building and publishing .NET Core applications to AWS services
C#
346
star
74

aws-sdk-php-symfony

PHP
346
star
75

aws-app-mesh-roadmap

AWS App Mesh is a service mesh that you can use with your microservices to manage service to service communication
344
star
76

aws-iot-device-sdk-python-v2

Next generation AWS IoT Client SDK for Python using the AWS Common Runtime
Python
335
star
77

constructs

Define composable configuration models through code
TypeScript
332
star
78

aws-lambda-builders

Python library to compile, build & package AWS Lambda functions for several runtimes & framework
Python
325
star
79

aws-codedeploy-agent

Host Agent for AWS CodeDeploy
Ruby
316
star
80

aws-sdk-ruby-record

Official repository for the aws-record gem, an abstraction for Amazon DynamoDB.
Ruby
313
star
81

aws-ops-wheel

The AWS Ops Wheel is a randomizer that biases for options that havenโ€™t come up recently; you can also outright cheat and specify the next result to be generated.
JavaScript
308
star
82

aws-xray-sdk-python

AWS X-Ray SDK for the Python programming language
Python
304
star
83

sagemaker-inference-toolkit

Serve machine learning models within a ๐Ÿณ Docker container using ๐Ÿง  Amazon SageMaker.
Python
303
star
84

aws-pdk

The AWS PDK provides building blocks for common patterns together with development tools to manage and build your projects.
TypeScript
288
star
85

amazon-ivs-react-native-player

A React Native wrapper for the Amazon IVS iOS and Android player SDKs.
TypeScript
283
star
86

pg_tle

Framework for building trusted language extensions for PostgreSQL
C
282
star
87

apprunner-roadmap

This is the public roadmap for AWS App Runner.
280
star
88

graph-explorer

React-based web application that enables users to visualize both property graph and RDF data and explore connections between data without having to write graph queries.
TypeScript
278
star
89

aws-xray-sdk-go

AWS X-Ray SDK for the Go programming language.
Go
274
star
90

aws-toolkit-eclipse

(End of life: May 31, 2023) AWS Toolkit for Eclipse
Java
273
star
91

elastic-beanstalk-roadmap

AWS Elastic Beanstalk roadmap
272
star
92

aws-logging-dotnet

.NET Libraries for integrating Amazon CloudWatch Logs with popular .NET logging libraries
C#
271
star
93

sagemaker-tensorflow-training-toolkit

Toolkit for running TensorFlow training scripts on SageMaker. Dockerfiles used for building SageMaker TensorFlow Containers are at https://github.com/aws/deep-learning-containers.
Python
267
star
94

elastic-load-balancing-tools

AWS Elastic Load Balancing Tools
Java
262
star
95

aws-step-functions-data-science-sdk-python

Step Functions Data Science SDK for building machine learning (ML) workflows and pipelines on AWS
Python
261
star
96

efs-utils

Utilities for Amazon Elastic File System (EFS)
Python
257
star
97

amazon-braket-sdk-python

A Python SDK for interacting with quantum devices on Amazon Braket
Python
254
star
98

aws-xray-sdk-node

The official AWS X-Ray SDK for Node.js.
JavaScript
248
star
99

Trusted-Advisor-Tools

The sample functions provided help to automate AWS Trusted Advisor best practices using Amazon Cloudwatch events and AWS Lambda.
Python
242
star
100

amazon-chime-sdk-component-library-react

Amazon Chime React Component Library with integrations with the Amazon Chime SDK.
TypeScript
240
star