• Stars
    star
    7,242
  • Rank 5,352 (Top 0.2 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created about 7 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An open source python library for automated feature engineering

Featuretools

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to Know about Machine Learning

Tests Documentation Status PyPI Version Anaconda Version StackOverflow PyPI Downloads


Featuretools is a python library for automated feature engineering. See the documentation for more information.

Installation

Install with pip

python -m pip install featuretools

or from the Conda-forge channel on conda:

conda install -c conda-forge featuretools

Add-ons

You can install add-ons individually or all at once by running

python -m pip install "featuretools[complete]"

Update checker - Receive automatic notifications of new Featuretools releases

python -m pip install "featuretools[updater]"

Premium Primitives - Use Premium Primitives, including Natural Language Processing primitives:

python -m pip install "featuretools[premium]"

TSFresh Primitives - Use 60+ primitives from tsfresh within Featuretools

python -m pip install "featuretools[tsfresh]"

Dask Support - Use Dask Dataframes to create EntitySets or run DFS with njobs > 1

python -m pip install "featuretools[dask]"

SQL - Automatic EntitySet generation from relational data stored in a SQL database:

python -m pip install "featuretools[sql]"

Example

Below is an example of using Deep Feature Synthesis (DFS) to perform automated feature engineering. In this example, we apply DFS to a multi-table dataset consisting of timestamped customer transactions.

>> import featuretools as ft
>> es = ft.demo.load_mock_customer(return_entityset=True)
>> es.plot()

Featuretools can automatically create a single table of features for any "target dataframe"

>> feature_matrix, features_defs = ft.dfs(entityset=es, target_dataframe_name="customers")
>> feature_matrix.head(5)
            zip_code  COUNT(transactions)  COUNT(sessions)  SUM(transactions.amount) MODE(sessions.device)  MIN(transactions.amount)  MAX(transactions.amount)  YEAR(join_date)  SKEW(transactions.amount)  DAY(join_date)                   ...                     SUM(sessions.MIN(transactions.amount))  MAX(sessions.SKEW(transactions.amount))  MAX(sessions.MIN(transactions.amount))  SUM(sessions.MEAN(transactions.amount))  STD(sessions.SUM(transactions.amount))  STD(sessions.MEAN(transactions.amount))  SKEW(sessions.MEAN(transactions.amount))  STD(sessions.MAX(transactions.amount))  NUM_UNIQUE(sessions.DAY(session_start))  MIN(sessions.SKEW(transactions.amount))
customer_id                                                                                                                                                                                                                                  ...
1              60091                  131               10                  10236.77               desktop                      5.60                    149.95             2008                   0.070041               1                   ...                                                     169.77                                 0.610052                                   41.95                               791.976505                              175.939423                                 9.299023                                 -0.377150                                5.857976                                        1                                -0.395358
2              02139                  122                8                   9118.81                mobile                      5.81                    149.15             2008                   0.028647              20                   ...                                                     114.85                                 0.492531                                   42.96                               596.243506                              230.333502                                10.925037                                  0.962350                                7.420480                                        1                                -0.470007
3              02139                   78                5                   5758.24               desktop                      6.78                    147.73             2008                   0.070814              10                   ...                                                      64.98                                 0.645728                                   21.77                               369.770121                              471.048551                                 9.819148                                 -0.244976                               12.537259                                        1                                -0.630425
4              60091                  111                8                   8205.28               desktop                      5.73                    149.56             2008                   0.087986              30                   ...                                                      83.53                                 0.516262                                   17.27                               584.673126                              322.883448                                13.065436                                 -0.548969                               12.738488                                        1                                -0.497169
5              02139                   58                4                   4571.37                tablet                      5.91                    148.17             2008                   0.085883              19                   ...                                                      73.09                                 0.830112                                   27.46                               313.448942                              198.522508                                 8.950528                                  0.098885                                5.599228                                        1                                -0.396571

[5 rows x 69 columns]

We now have a feature vector for each customer that can be used for machine learning. See the documentation on Deep Feature Synthesis for more examples.

Featuretools contains many different types of built-in primitives for creating features. If the primitive you need is not included, Featuretools also allows you to define your own custom primitives.

Demos

Predict Next Purchase

Repository | Notebook

In this demonstration, we use a multi-table dataset of 3 million online grocery orders from Instacart to predict what a customer will buy next. We show how to generate features with automated feature engineering and build an accurate machine learning pipeline using Featuretools, which can be reused for multiple prediction problems. For more advanced users, we show how to scale that pipeline to a large dataset using Dask.

For more examples of how to use Featuretools, check out our demos page.

Testing & Development

The Featuretools community welcomes pull requests. Instructions for testing and development are available here.

Support

The Featuretools community is happy to provide support to users of Featuretools. Project support can be found in four places depending on the type of question:

  1. For usage questions, use Stack Overflow with the featuretools tag.
  2. For bugs, issues, or feature requests start a Github issue.
  3. For discussion regarding development on the core library, use Slack.
  4. For everything else, the core developers can be reached by email at [email protected]

Citing Featuretools

If you use Featuretools, please consider citing the following paper:

James Max Kanter, Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data science endeavors. IEEE DSAA 2015.

BibTeX entry:

@inproceedings{kanter2015deep,
  author    = {James Max Kanter and Kalyan Veeramachaneni},
  title     = {Deep feature synthesis: Towards automating data science endeavors},
  booktitle = {2015 {IEEE} International Conference on Data Science and Advanced Analytics, DSAA 2015, Paris, France, October 19-21, 2015},
  pages     = {1--10},
  year      = {2015},
  organization={IEEE}
}

Built at Alteryx

Featuretools is an open source project maintained by Alteryx. To see the other open source projects we’re working on visit Alteryx Open Source. If building impactful data science pipelines is important to you or your business, please get in touch.

Alteryx Open Source

More Repositories

1

evalml

EvalML is an AutoML library written in python.
Python
772
star
2

compose

A machine learning tool for automated prediction engineering. It allows you to easily structure prediction problems and generate labels for supervised learning.
Python
497
star
3

open_source_demos

A collection of demos showcasing automated feature engineering and machine learning in diverse use cases
Jupyter Notebook
496
star
4

predict-customer-churn

A general-purpose framework for solving problems with machine learning applied to predicting customer churn
Jupyter Notebook
405
star
5

Automated-Manual-Comparison

Automated vs Manual Feature Engineering Comparison. Implemented using Featuretools.
Jupyter Notebook
327
star
6

predict-remaining-useful-life

Predict remaining useful life of a component based on historical sensor observations using automated feature engineering
Jupyter Notebook
229
star
7

locust-grasshopper

a load testing tool extended from locust
Python
177
star
8

woodwork

Woodwork is a Python library that provides robust methods for managing and communicating data typing information.
Python
144
star
9

autonormalize

python library for automated dataset normalization
Python
110
star
10

predict-loan-repayment

Predict whether a loan will be repaid using automated feature engineering.
Jupyter Notebook
64
star
11

predict-taxi-trip-duration

Predict taxi trip duration based on historical trips using automated feature engineering
Jupyter Notebook
60
star
12

categorical_encoding

Repository for the research and implementation of categorical encoding into a Featuretools-compatible Python library
Jupyter Notebook
50
star
13

nlp_primitives

Natural Language Processing primitives for Featuretools
Python
37
star
14

featuretools-tsfresh-primitives

TSFresh primitives for featuretools
Python
36
star
15

predict-malicious-cyber-connections

Predict whether internet traffic is malicious given historical router traffic data
Jupyter Notebook
34
star
16

predict-correct-answer

Predict whether a student will correctly answer a problem based on past performance using automated feature engineering
HTML
32
star
17

DSx

Hands on tutorials demonstrating the concepts of Prediction engineering, Feature engineering and automation in data science.
Jupyter Notebook
29
star
18

predict-appointment-noshow

Predict whether or not a patient will show up to their next appointment using automated feature engineering
Jupyter Notebook
29
star
19

predict-olympic-medals

Predict how many medals a country will win at the Olympics based on past performance using automated feature engineering
Jupyter Notebook
29
star
20

snakeplane

A flexible, easy-to-use abstraction layer for building tools for the Alteryx Python SDK
Python
27
star
21

python-sdk-samples

A repository for all sample plugins created with the Alteryx python SDK
Python
25
star
22

predict-household-poverty

Predict the poverty of households in Costa Rica using automated feature engineering.
Jupyter Notebook
23
star
23

AlteryxRhelper

Create, manage and edit R code outside Alteryx in an IDE
R
20
star
24

alteryx-tool-generator

Generator to scaffold a custom Alteryx Designer tool.
JavaScript
18
star
25

DL-DB

Deep learning for time-varying multi-entity datasets
Python
17
star
26

cookbook-alteryx-server

Chef cookbook for Alteryx Server
Ruby
16
star
27

promote-python

Python library for deploying models built using Python to Alteryx Promote.
Python
16
star
28

henchman

A collection of repeated use utility functions for notebook demos.
Python
15
star
29

AlteryxPredictive

This is an R package containing utility functions used by the predictive tools in Alteryx.
R
15
star
30

ayx-developer-sdk

Alteryx Developer Software Development Kit (SDK)
12
star
31

featuretools-sklearn-transformer

Featuretools' DFS as a scikit-learn transformer
Python
11
star
32

sparkGLM

An R-like GLM package for Apache Spark
Scala
10
star
33

featuretools_sql

Automated creation of EntitySets from relational data stored in SQL databases
Python
10
star
34

flightdeck

Interactive Dashboard for Predictive Models
CSS
8
star
35

mini-tate

TypeScript
8
star
36

featuretools-docker

Use docker to provision Featuretools with a Jupyter notebook server
Dockerfile
7
star
37

dev-harness

TypeScript
7
star
38

jeeves

A sagacious valet to build and maintain predictive tools in Alteryx.
R
7
star
39

alteryx-ui

JavaScript
6
star
40

learning-guide

Want to use Alteryx, but not sure where to start? To guide you through your journey, we have provided a comprehensive list of available resources!
HTML
6
star
41

ui-automation-samples

HTML
5
star
42

pythontool-ayx-package

Python
5
star
43

OpenYXDB

C
5
star
44

gh-action-ci

A GitHub Action integrated with the GitHub and CircleCI API.
Python
5
star
45

promote-r-client

R package for deploying models built using R to Alteryx Promote.
R
5
star
46

DLDB-Demos

Jupyter Notebook
5
star
47

premium_primitives

Python
4
star
48

D3M-Online-Retail-Dataset

Convert D3M raw dataset to D3M clean dataset with Featuretools
Python
4
star
49

JavaScriptTool

Alteryx tool to execute arbitrary JavaScript code within the Alteryx workflow.
JavaScript
4
star
50

generator-node-typescript-simple

An opinionated yeoman generator for node packages with typescript. Based on generator-node-typescript.
JavaScript
3
star
51

AlteryxSim

R package for Simulation in Alteryx
R
3
star
52

react-comms

JavaScript
3
star
53

AlteryxPrescriptive

R Package for Optimization in Alteryx
R
3
star
54

alteryx-open-src-update-checker

An add-on for Alteryx open source that automatically checks for the latest updates and warnings you when an Alteryx package is out of date.
Python
3
star
55

gh-action-pypi-upload

GitHub action to upload to PyPi
Shell
2
star
56

AlteryxPythonSdk-teaching-a-spider-to-crawl

Python
2
star
57

ta1-primitives

Python
2
star
58

predict-restaurant-rating

Predict the rating given to a restaurant based solely on the review text. Uses custom NLP primitives.
Jupyter Notebook
2
star
59

Code_for_weekly_challenge

Code used to generate datasets for Alteryx's weekly challenges on the Community
R
1
star
60

adobe-analytics

Generate on demand report data from your Adobe Analytics report suites.
JavaScript
1
star
61

AlteryxAddins

R
1
star
62

GoogleAnalytics

Alteryx Google Analytics Plugin
JavaScript
1
star
63

Logistic_Regression

Logistic Regression Tool
CSS
1
star
64

CheckMates

CheckMate is an AutoML library which catches and warns of problems with your data and problem setup before modeling
Python
1
star