• Stars
    star
    115
  • Rank 305,916 (Top 7 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated almost 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official PyTorch implementation of CVPR 2020 Oral: Real-Time Panoptic Segmentation from Dense Detections

Real-Time Panoptic Segmentation from Dense Detections

Official PyTorch implementation of the CVPR 2020 Oral Real-Time Panoptic Segmentation from Dense Detections by the ML Team at Toyota Research Institute (TRI), cf. References below.

Install

git clone https://github.com/TRI-ML/realtime_panoptic.git
cd realtime_panoptic
make docker-build

To verify your installation, you can also run our simple test run to conduct inference on 1 test image using our Cityscapes pretrained model:

make docker-run-test-sample

Now you can start a docker container with interactive mode:

make docker-start

Demo

We provide demo code to conduct inference on Cityscapes pretrained model.

python scripts/demo.py --config-file <config.yaml>  --input <input_image_file> \
        --pretrained-weight <checkpoint.pth>

Simple user example using our pretrained model previded in the Models section:

python scripts/demo.py --config-file ./configs/demo_config.yaml --input media/figs/test.png --pretrained-weight cvpr_realtime_pano_cityscapes_standalone_no_prefix.pth

Models

Cityscapes

Model PQ PQ_th PQ_st
ResNet-50 58.8 52.1 63.7

License

The source code is released under the MIT license.

References

Real-Time Panoptic Segmentation from Dense Detections (CVPR 2020 oral)

Rui Hou*, Jie Li*, Arjun Bhargava, Allan Raventos, Vitor Guizilini, Chao Fang, Jerome Lynch, Adrien Gaidon, [paper], [oral presentation], [teaser]

@InProceedings{real-time-panoptic,
author = {Hou, Rui and Li, Jie and Bhargava, Arjun and Raventos, Allan and Guizilini, Vitor and Fang, Chao and Lynch, Jerome and Gaidon, Adrien},
title = {Real-Time Panoptic Segmentation From Dense Detections},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

More Repositories

1

packnet-sfm

TRI-ML Monocular Depth Estimation Repository
Python
1,243
star
2

vidar

Python
560
star
3

DDAD

Dense Depth for Autonomous Driving (DDAD) dataset.
Python
490
star
4

dd3d

Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.
Python
464
star
5

prismatic-vlms

A flexible and efficient codebase for training visually-conditioned language models (VLMs)
Python
445
star
6

KP3D

Code for "Self-Supervised 3D Keypoint Learning for Ego-motion Estimation"
Python
240
star
7

PF-Track

Implementation of PF-Track
Python
203
star
8

KP2D

Python
176
star
9

sdflabel

Official PyTorch implementation of CVPR 2020 oral "Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors"
Python
161
star
10

permatrack

Implementation for Learning to Track with Object Permanence
Python
112
star
11

camviz

Visualization Library
Python
101
star
12

dgp

ML Dataset Governance Policy for Autonomous Vehicle Datasets
Python
94
star
13

VEDet

Python
39
star
14

RAP

This is the official code for the paper RAP: Risk-Aware Prediction for Robust Planning: https://arxiv.org/abs/2210.01368
Python
34
star
15

VOST

Code for the VOST dataset
Python
22
star
16

RAM

Implementation for Object Permanence Emerges in a Random Walk along Memory
Python
18
star
17

road

ROAD: Learning an Implicit Recursive Octree Auto-Decoder to Efficiently Encode 3D Shapes (CoRL 2022)
Python
11
star
18

efm_datasets

TRI-ML Embodied Foundation Datasets
Python
8
star
19

OctMAE

Zero-Shot Multi-Object Shape Completion (ECCV 2024)
Python
5
star
20

refine

Official PyTorch implementation of the SIGGRAPH 2024 paper "ReFiNe: Recursive Field Networks for Cross-Modal Multi-Scene Representation"
Python
5
star
21

stochastic_verification

Official repository for the paper "How Generalizable Is My Behavior Cloning Policy? A Statistical Approach to Trustworthy Performance Evaluation"
Python
5
star
22

HAICU

4
star
23

binomial_cis

Computation of binomial confidence intervals that achieve exact coverage.
Jupyter Notebook
4
star
24

vlm-evaluation

VLM Evaluation: Benchmark for VLMs, spanning text generation tasks from VQA to Captioning
Python
1
star