Regularized_autoencoders(RAE)
This is the official implementation of the Paper titled 'From variational to deterministic Autoencoders'
If you find our work useful please cite us as the following.
@inproceedings{
ghosh2020from,
title={From Variational to Deterministic Autoencoders},
author={Partha Ghosh and Mehdi S. M. Sajjadi and Antonio Vergari and Michael Black and Bernhard Scholkopf},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=S1g7tpEYDS}
}
Watch a brief presentation
Full pdf
You can download a full PDF version of our paper from https://openreview.net/forum?id=S1g7tpEYDS
Set up
- Create a virtual environment
virtualenv --no-site-packages <your_home_dir>/.virtualenvs/rae
- Activate your environment
source <your_home_dir>/.virtualenvs/rae/bin/activate
- clone the repo
git clone ...
- Navigate to RAE directory
cd Regularized_autoencoders-RAE-
- Install requirements
pip install -r requirements.txt
- Run training
python train_test_var_reduced_vaes.py <config_id>
Data and pretrained models
###celebA
- Please download the celeba dataset
- Please pre process as desribed in the original paper. Centre crop
140X140
and resize to64X64
- Place it under desired directory and specify the location in the
dataloader.py
fileline 144
- the directory structure underneath must be as follows
celebA_root
|____ train
|___ train
|___ 0.png
1.png
.
.
.
|____ test
|___ test
|___ 182638.png
182639.png
.
.
.
|____ val
|___ val
|___ 162771.png
162772.png
.
.
.
CIFAR
- for CIFAR10 please prepare a
.npz
filecifar_10.npz
- this file should contain a numpy array of size
tran_smaplesX32X32X3
under the keyx_train
- and another numpy array of test samples of dimension
10000X32X32X3
- Values must be in the range
0-255
- please modify the path to root directory in
line 143
in filedataloader.py
MNIST
- for MNIST please prepare a
.npz
filemnist_32x32.npz
- this file should contain a numpy array of size
tran_smaplesX32X32X1
under the keyx_train
- values must be in the range
0-255
- padd 2 columns and rows of zeros on all four sides to get the dimensionality of MNIST
samples become
32X32X1
- modify the root directory path in
line 125
in filedataloader.py
Checkpoints
- Please download the
logs
directory from this dropbox link - specify the location to this directory in the
config.py
file - and you are all set up to run
Misc
Example configurations
It is a big dictionar with primary and secondary entries. Primary entry holds all
the common entries while the secondary entry is run specific entries. the run inde is
simply the flat index number from top. So in the following example to run the setting
under dictionary key 1
one must run with run_id
2
wile run_id 0
runs the first
entry under dictionary key 0
. All the results are generated in the log
directory
under sme directory hierarchy.
configurations = \
{0: [{'base_model_name': "rae"},
{'expt_name': 'l2_regularization'},
{'expt_name': 'l2_regularization'}
],
1: [{'base_model_name': "rae"},
{'expt_name': 'spectral_normalization'}
],
2: [{'base_model_name': "rae"},
{'expt_name': 'l2_regularization'},
{'expt_name': 'l2_regularization'}
],
}