facial-recognition-using-ConvNet-Inception
In this notebook, we will build a face recognition system. Many of the ideas presented here are from FaceNet and DeepFace. Face recognition problems commonly fall into two categories: Face Verification - "is this the claimed person?". For example, at some airports, you can pass through customs by letting a system scan your passport and then verifying that you (the person carrying the passport) are the correct person. A mobile phone that unlocks using your face is also using face verification. This is a 1:1 matching problem. Face Recognition - "who is this person?". For example, the video lecture showed a face recognition video (https://www.youtube.com/watch?v=wr4rx0Spihs) of Baidu employees entering the office without needing to otherwise identify themselves. This is a 1:K matching problem. FaceNet learns a neural network that encodes a face image into a vector of 512 numbers. By comparing two such vectors, you can then determine if two pictures are of the same person.