• Stars
    star
    375
  • Rank 114,096 (Top 3 %)
  • Language
    JavaScript
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated 29 days ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

JavaScript implementation of UMAP

Build Status

UMAP-JS

This is a JavaScript reimplementation of UMAP from the python implementation found at https://github.com/lmcinnes/umap.

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction.

There are a few important differences between the python implementation and the JS port.

  • The optimization step is seeded with a random embedding rather than a spectral embedding. This gives comparable results for smaller datasets. The spectral embedding computation relies on efficient eigenvalue / eigenvector computations that are not easily done in JS.
  • There is no specialized functionality for angular distances or sparse data representations.

Usage

Installation

yarn add umap-js

Synchronous fitting

import { UMAP } from 'umap-js';

const umap = new UMAP();
const embedding = umap.fit(data);

Asynchronous fitting

import { UMAP } from 'umap-js';

const umap = new UMAP();
const embedding = await umap.fitAsync(data, epochNumber => {
  // check progress and give user feedback, or return `false` to stop
});

Step-by-step fitting

import { UMAP } from 'umap-js';

const umap = new UMAP();
const nEpochs = umap.initializeFit(data);
for (let i = 0; i < nEpochs; i++) {
  umap.step();
}
const embedding = umap.getEmbedding();

Supervised projection using labels

import { UMAP } from 'umap-js';

const umap = new UMAP();
umap.setSupervisedProjection(labels);
const embedding = umap.fit(data);

Transforming additional points after fitting

import { UMAP } from 'umap-js';

const umap = new UMAP();
umap.fit(data);
const transformed = umap.transform(additionalData);

Parameters

The UMAP constructor can accept a number of hyperparameters via a UMAPParameters object, with the most common described below. See umap.ts for more details.

Parameter Description default
nComponents The number of components (dimensions) to project the data to 2
nEpochs The number of epochs to optimize embeddings via SGD (computed automatically)
nNeighbors The number of nearest neighbors to construct the fuzzy manifold 15
minDist The effective minimum distance between embedded points, used with spread to control the clumped/dispersed nature of the embedding 0.1
spread The effective scale of embedded points, used with minDist to control the clumped/dispersed nature of the embedding 1.0
random A pseudo-random-number generator for controlling stochastic processes Math.random
distanceFn A custom distance function to use euclidean
const umap = new UMAP({
  nComponents: 2,
  nEpochs: 400,
  nNeighbors: 15,
});

Testing

umap-js uses jest for testing.

yarn test

This is not an officially supported Google product

More Repositories

1

facets

Visualizations for machine learning datasets
Jupyter Notebook
7,345
star
2

lit

The Learning Interpretability Tool: Interactively analyze ML models to understand their behavior in an extensible and framework agnostic interface.
TypeScript
3,482
star
3

saliency

Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).
Jupyter Notebook
951
star
4

what-if-tool

Source code/webpage/demos for the What-If Tool
HTML
909
star
5

llm-comparator

LLM Comparator is an interactive data visualization tool for evaluating and analyzing LLM responses side-by-side, developed by the PAIR team.
JavaScript
286
star
6

knowyourdata

A tool to help researchers and product teams understand datasets with the goal of improving data quality, and mitigating fairness and bias issues.
CSS
281
star
7

wordcraft

✨✍️ Wordcraft is an AI-powered text editor with an emphasis on short story writing
TypeScript
239
star
8

datacardsplaybook

The Data Cards Playbook helps dataset producers and publishers adopt a people-centered approach to transparency in dataset documentation.
TypeScript
170
star
9

scatter-gl

Interactive 3D / 2D webgl-accelerated scatter plot point renderer
TypeScript
168
star
10

understanding-umap

Understanding the theory behind UMAP
JavaScript
164
star
11

federated-learning

Federated learning experiment using TensorFlow.js
TypeScript
160
star
12

interpretability

PAIR.withgoogle.com and friend's work on interpretability methods
JavaScript
147
star
13

ai-explorables

https://pair.withgoogle.com/explorables/
Jupyter Notebook
59
star
14

cococo

𝄡 Collaborative Convolutional Counterpoint
TypeScript
46
star
15

cam-scroller

Cam Scroller is an open-source Chrome extension that uses your webcam and deeplearn.js to enable scrolling through webpages using custom gestures that you define.
JavaScript
33
star
16

font-explorer

Font latent space explorer using tensorflow.js
Vue
32
star
17

clinical-vis

A javascript medical record visualization (https://arxiv.org/abs/1810.05798)
HTML
26
star
18

megaplot

TypeScript
19
star
19

depth-maps-art-and-illusions

TypeScript
18
star
20

pair-code.github.io

HTML
18
star
21

farsight

In situ interactive widgets for responsible AI 🌱
TypeScript
17
star
22

tiny-transformers

Jupyter Notebook
16
star
23

recommendation-rudders

TypeScript
13
star
24

covid19_symptom_dataset

JavaScript
12
star
25

thehardway

Supplementary code repository to accompany Tic-Tac-Toe the Hard Way podcast
JavaScript
11
star
26

jax-recommenders

Python
9
star
27

autonotes

AutoNotes is an experimental prototype for AI-powered notetaking, with features including hierarchical tagging, "chat with your notes," and highlights.
TypeScript
8
star
28

book-viz

Visualizing multilevel structure in books with sentence embeddings.
Jupyter Notebook
6
star
29

model-alignment

Model Alignment is a python library from the PAIR team that enable users to create model prompts through user feedback instead of manual prompt writing and editing. The technique makes use of constitutional principles to align prompts to users' desired values.
Python
6
star
30

waterfall-of-meaning

TypeScript
5
star
31

deliberate-lab

Platform for running online research experiments on human + LLM group dynamics.
TypeScript
4
star
32

deeplearnjs-legacy-loader

Deprecated: Legacy TensorFlow model loader for deeplearn.js
Python
3
star
33

colormap

JavaScript
3
star
34

adversarial-nibbler-vis

An interactive visualization interface for exploring and analyzing the Adversarial Nibbler dataset
TypeScript
3
star
35

auto-histograms

Python
2
star
36

ml-vis-experiments

Jupyter Notebook
1
star
37

deeplearnjs-docs

TypeScript
1
star