• Stars
    star
    764
  • Rank 59,449 (Top 2 %)
  • Language
    Julia
  • License
    MIT License
  • Created about 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Differentiation for Hackers

Differentiation for Hackers

Build Status

The goal of this handbook is to demystify algorithmic differentiation, the tool that underlies modern machine learning. It begins with a calculus-101 style understanding and gradually extends this to build toy implementations of systems similar to PyTorch and TensorFlow. I have tried to clarify the relationships between every kind of differentiation I can think of – including forward and reverse, symbolic, numeric, tracing and source transformation. Where typical real-word ADs are mired in implementation details, these implementations are designed to be coherent enough that the real, fundamental differences – of which there are surprisingly few – become obvious.

The intro notebook is recommended to start with, but otherwise notebooks do not have a fixed order.

  • Intro – explains the basics, beginning with a simple symbolic differentiation routine.
  • Back & Forth – discusses the difference between forward and reverse mode AD.
  • Forward – discusses forward-mode AD and its relationship to symbolic and numerical differentiation.
  • Tracing – discusses tracing-based implementations of reverse mode, as used by TensorFlow and PyTorch.
  • Reverse – discusses a more powerful reverse mode based on source transformation (not complete).

If you want to run the notebooks locally, they can be built by running the src/notebooks.jl script using Julia. They should appear inside a /notebooks folder. Alternatively, you can run through the scripts in Juno.