• Stars
    star
    431
  • Rank 100,866 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 4 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

BorderDet: Border Feature for Dense Object Detection(ECCV2020 Oral)

BorderDet

This project provides an implementation for "BorderDet: Border Feature for Dense Object Detection" (ECCV2020 Oral) on PyTorch.

For the reason that experiments in the paper were conducted using internal framework, this project reimplements them on cvpods and reports detailed comparisons below.

Requirements

Get Started

  • install cvpods locally (requires cuda to compile)
python3 -m pip install 'git+https://github.com/Megvii-BaseDetection/cvpods.git'
# (add --user if you don't have permission)

# Or, to install it from a local clone:
git clone https://github.com/Megvii-BaseDetection/cvpods.git
python3 -m pip install -e cvpods

# Or,
pip install -r requirements.txt
python3 setup.py build develop
  • prepare datasets
cd /path/to/cvpods
cd datasets
ln -s /path/to/your/coco/dataset coco
  • Train & Test
git clone https://github.com/Megvii-BaseDetection/BorderDet.git
cd BorderDet/playground/detection/coco/borderdet/borderdet.res50.fpn.coco.800size.1x  # for example

Train

pods_train --num-gpus 8

Test

pods_test --num-gpus 8 \
    MODEL.WEIGHTS /path/to/your/save_dir/ckpt.pth # optional
    OUTPUT_DIR /path/to/your/save_dir # optional

Multi node training

sudo apt install net-tools ifconfig

pods_train --num-gpus 8 --num-machines N --machine-rank 0/1/.../N-1 --dist-url "tcp://MASTER_IP:port"

Results on COCO

For your convenience, we provide the performance of the following trained models. All models are trained with 16 images in a mini-batch and frozen batch normalization. All model including X_101/DCN_X_101 will be released soon.

Model Multi-scale training Multi-scale testing Testing time / im AP (minival) Link
FCOS_R_50_FPN_1x No No 54ms 38.7 download
BD_R_50_FPN_1x No No 60ms 41.4 download
BD_R_101_FPN_1x Yes No 76ms 45.0 download
BD_X_101_32x8d_FPN_1x Yes No 124ms 45.6 download
BD_X_101_64x4d_FPN_1x Yes No 123ms 46.2 download
BD_DCNV2_X_101_32x8d_FPN_1x Yes No 150ms 47.9 download
BD_DCNV2_X_101_64x4d_FPN_1x Yes No 156ms 47.5 download

Acknowledgement

cvpods is developed based on Detectron2. For more details about official detectron2, please check DETECTRON2.

Contributing to the project

Any pull requests or issues are welcome.

More Repositories

1

YOLOX

YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/
Python
9,231
star
2

BEVDepth

Official code for BEVDepth.
Python
709
star
3

cvpods

All-in-one Toolbox for Computer Vision Research.
Python
643
star
4

DeFCN

End-to-End Object Detection with Fully Convolutional Network
Python
494
star
5

DynamicRouting

Learning Dynamic Routing for Semantic Segmentation
Python
378
star
6

BEVStereo

Official code for BEVStereo
Python
253
star
7

OTA

Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.
Python
241
star
8

AutoAssign

Pytorch implementation of "AutoAssign: Differentiable Label Assignment for Dense Object Detection"
Python
140
star
9

TreeFilter-Torch

Learnable Tree Filter for Structure-preserving Feature Transform
Python
139
star
10

DenseTeacher

DenseTeacher: Dense Pseudo-Label for Semi-supervised Object Detection
Python
120
star
11

DisAlign

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)
Python
117
star
12

Megvii-BaseDetection

You are welcomed to join us!
50
star
13

GFSD

This project provides an implementation for "Generalized Few-Shot Object Detection without Forgetting" (CVPR2021) on PyTorch.
Python
45
star
14

LLA

Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.
Python
35
star
15

4K-Face

4K-Face: A Dataset with Huge Scale-variance Faces
32
star
16

storage

provide Checkpoint for users.
1
star