• Stars
    star
    253
  • Rank 160,776 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created about 2 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official code for BEVStereo

BEVStereo

BEVStereo is a new multi-view 3D object detector using temporal stereo to enhance depth estimation.

Updates!!

  • 【2022/09/22】 We released our paper on Arxiv.
  • 【2022/08/24】 We submitted our result on nuScenes Detection Task and achieved the SOTA.

Quick Start

Installation

Step 0. Install pytorch(v1.9.0).

Step 1. Install MMDetection3D(v1.0.0rc4).

Step 2. Install requirements.

pip install -r requirements.txt

Step 3. Install BEVDepth(gpu required).

python setup.py develop

Data preparation

We use the same data format as BEVDepth, if you have processed it before, please skip.

Step 0. Download nuScenes official dataset.

Step 1. Symlink the dataset root to ./data/.

ln -s [nuscenes root] ./data/

The directory will be as follows.

BEVDepth
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ nuScenes
β”‚   β”‚   β”œβ”€β”€ maps
β”‚   β”‚   β”œβ”€β”€ samples
β”‚   β”‚   β”œβ”€β”€ sweeps
β”‚   β”‚   β”œβ”€β”€ v1.0-test
|   |   β”œβ”€β”€ v1.0-trainval

Step 2. Prepare infos.

python scripts/gen_info.py

Step 3. Prepare depth gt.

python scripts/gen_depth_gt.py

Tutorials

Train.

python [EXP_PATH] --amp_backend native -b 8 --gpus 8

Eval.

python [EXP_PATH] --ckpt_path [CKPT_PATH] -e -b 8 --gpus 8

Benchmark

Exp Frames EMA CBGS mAP mATE mASE mAOE mAVE mAAE NDS weights
R50 key + sweep4 0.3427 0.6560 0.2784 0.5982 0.5347 0.2228 0.4423 github
R50 key + sweep4 √ 0.3435 0.6585 0.2757 0.5792 0.5034 0.2163 0.4485 github
R50 key + key 0.3456 0.6589 0.2774 0.5500 0.4980 0.2278 0.4516 github
R50 key + key √ 0.3494 0.6671 0.2785 0.5606 0.4686 0.2295 0.4543 github
R50 key + key √ 0.3576 0.6071 0.2684 0.4157 0.3928 0.2021 0.4902 github
R50 key + key √ √ 0.3721 0.5980 0.2701 0.4381 0.3672 0.1898 0.4997 github

Acknowledgments

This project exists thanks to all the people who instruct. @Haotian-Zh @xavierwu95 @Tai-Wang

More Repositories

1

YOLOX

YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/
Python
9,231
star
2

BEVDepth

Official code for BEVDepth.
Python
709
star
3

cvpods

All-in-one Toolbox for Computer Vision Research.
Python
643
star
4

DeFCN

End-to-End Object Detection with Fully Convolutional Network
Python
494
star
5

BorderDet

BorderDet: Border Feature for Dense Object Detection(ECCV2020 Oral)
Python
431
star
6

DynamicRouting

Learning Dynamic Routing for Semantic Segmentation
Python
378
star
7

OTA

Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.
Python
241
star
8

AutoAssign

Pytorch implementation of "AutoAssign: Differentiable Label Assignment for Dense Object Detection"
Python
140
star
9

TreeFilter-Torch

Learnable Tree Filter for Structure-preserving Feature Transform
Python
139
star
10

DenseTeacher

DenseTeacher: Dense Pseudo-Label for Semi-supervised Object Detection
Python
120
star
11

DisAlign

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)
Python
117
star
12

Megvii-BaseDetection

You are welcomed to join us!
50
star
13

GFSD

This project provides an implementation for "Generalized Few-Shot Object Detection without Forgetting" (CVPR2021) on PyTorch.
Python
45
star
14

LLA

Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.
Python
35
star
15

4K-Face

4K-Face: A Dataset with Huge Scale-variance Faces
32
star
16

storage

provide Checkpoint for users.
1
star