• Stars
    star
    110
  • Rank 316,770 (Top 7 %)
  • Language
    C++
  • License
    MIT License
  • Created about 11 years ago
  • Updated about 9 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

C++11 metaprogramming library

Turbo

Join the chat at https://gitter.im/Manu343726/Turbo Build Status GitHub stars GitHub forks GitHub issues biicode block Dependency Status

C++11 metaprogramming library

What is Turbo?

Turbo is a library designed to provide compile-time utilities through template meta-programming.

One of the key points of C++, and where its expressiveness power comes from, is its ability to define new language constructs and/or customize existing constructs, all leading in a simple and clear syntax (See for example DSELs).

But when dealing with the creation and/or manipulation of such constructs, nothing is simple nor clear. Template-meta-programming is powerful, but suffers from a horrible syntax and the lack of high-level (meta)programming features.
Some people claim that tmp seems like a compile-time pure functional language built inside C++ itself. But instead meta-programming in C++ is more like a functional language with the worst syntax ever made (Despite LISP?).

This library aims to provide high-level constructs to aid with the manipulation of the C++ type system, and the creation and execution of complex computations at compile-time; all with a clear and uniform syntax. Also the library takes advantage of such features and provides some useful C++ (runtime) utilities, which are easy to implement thanks to Turbo.

What about Boost.MPL?

Boost.MPL is the de facto meta programming library for C++. But it suffers from two main problems which, in my oppinion, makes difficult to work with it:

  • Is Boost: The Boost libraries are one of the best C++ libraries in the world, but they base the implementation of their features on many many tricks they implemented (See Boost.Preprocessor, for example). The problem with Boost is that making a project depend on the Boost libraries could be a problem, its a huge library. My intention was to rely on standard features only, that is, something which works perfectly providing a C++11 compliant compiler only.

  • Boost.MPL was designed on the C++98 era: C++11 is like a reboot of the language, and like in other parts of the language, meta-programming in C++11 is far easier than in C++98/03. The problem is that MPL was written for/using C++98/03 and its design is based in some cumbersome constructs which have been cleared and/or simplified a lot in C++11. Specifically, template aliases are a huge advantage when doing template-meta-programming, and the Turbo library relies on that in all of its features.

Features

At this time (April 2014) the library is being completely rewritten from scratch.
The initial implementation suffers from some scalability issues due to problems (Bad design decisions?) on the base design and modules of the library.

To solve that problems, the library was completely redesigned, focusing the implementation on high-order meta-programming facilities to make developing new features easy, and reduce (Avoid, if possible=) coupling on different features of the library.

The reimplementation of the library is being developed at the reboot branch. Its (currently) focused in a simple set of high-order features:

Uniform expression evaluation facilities

The goal is to create a way to evaluate any kind of expression the library could work with.
By convention, this library works with types only. There are no templates with value parameters, basic values are provided through boxing using wrappers like std::integral_constant. Note that this is not required inside the implementation itself.
So an expression could be:

  1. A simple value (Like int).
  2. A parametrized-expression: A parametrized expression is just an expression composed from a set of components. Because this is a template meta-programming library, the way to build expressions is through templates. So a parametrized expressions refers to any kind of template.
  3. A functional expression: This is a type of parametrized expression designed to return a value from a set of parameters. That is, a function. This library assumes that any expression with a result type member is a function.
//A simple expression
using e1 = int; //e1 is a simple expression
     
//A functional expression
using e2 = tml::function<int>; //e2 is a functional expression

//A more complex expression (A functional expression)
using e3 = tml::transform<tml::list<int,float,double>,tml::size_of<_1>>;

To evaluate an expression, one should evaluate the entire set of parameters of a parametrized expression, and return the result if the expression is a functional expression. Thats what tml::eval is designed for:

//Just a simple identity metafunction:
template<typename T>
struct identity
{
    using result = T;
};
    
using expression = identity<int>;
using result = tml::eval<expression>; //Compute the result of evaluating the expression.
using result = tml::eval<identity<identity<int>>>; //result is int

Also, tml::eval could be used to take an expression and evaluate it with a new set of arguments. Following with the example above:

using binded = tml::eval<identity<int>,float>; //We evaluate identity<> with float instead of int as parameter

Or one could fill the expression with placeholders and evaluate the expression later when the arguments are available (Lazy evaluation):

using expression = f<_1,_2,_3>; //_1,_2, and _3 are placeholders
...
using result = tml::eval<expression,float,int,double>;

Because the library wrks with types only, lazy evaluation of metafunctions should be done filling the metafunction with placeholders to properly instantiate it (See the example above).
Turbo provides the tml::lazy template, designed to take a template parameter storing it, making possible to instantiate the template later:

using t = tml::lazy<tml::function>; //t stores a tml::function metafunction
using instance = tml::lazy_instance<t,int>; //instance is tml::function<int>

Also tml::lazy could be used to do lazy evaluation of metafunctions. For example:

using t = tml::lazy<tml::function>;
using result = tml::eval<t,int>; //Result is int (The result of evaluating tml::function<int>)

Finally tml::eval abuses of function types and specializes itself to handle function types like F(ARGS...) as a metafunction call, where F is a functional expression:

using F = tml::lambda<_1 , tml::add<_1,_1>>;
using i = tml::Int<1>;

using r = tml::eval<F(i)>;

For more information see the documentation inside eval.hpp.

Haskell-like let expressions

tml::eval allows you to evaluate an existing expression with other arguments, but it hasn't enough power to be usable in all situations. For example, tml::eval only binds parameters of the main scope, so an expression with nested parametrized expressions can only be reevaluated specifying the most enclosing parameter (See the tml::eval binding examples above).

Turbo probides tml::let, a high-order metafunction similar to haskell's let Its purpose is to substitute a value on an expression, given an specific variable to bind the value with:

struct X{}; //A "variable"

using expression = tml::let<X,int,tml::function<X>>; // expression is "tml::function<int>"

The power of let comes from its ability to parse the entire expression recursively, substituting all occurrences of the variable with the specified value:

using expression = tml::let<X,float,f<X,int,tml::function<g<X,X>>>>; //Expression is f<float,int,tml::function<g<float,float>>>

Finally, Turbo extends that concept providing the tml::multi_let template, a template designed as a let of multiple variables:

using expression = tml::multi_let<X,Y,Z, //variables
                                  int,char,double, //values
                                  f<X,g<Y,Z>> //expression
                                 >;

tml::multi_let works currifying the multiple variable let into a chain of nested tml::let expressions.

Lambda expressions:

The ability of substituting a value in an expression provided by tml::let makes possible to create lambda expressions without any special effort. Turbo provides the tml::lambda template:

//Gets a list with the sizes of the specified types
using result = tml::transform<tml::lambda<_1,tml::size_of<_1>>,tml::list<float,int,double>>;

Multiple-variable lambda expressions are provided too:

//Returns true if at least one element of the SEQUENCE evaluates the predicate P to true
template<typename P , typename SEQUENCE>
using any_of = tml::foldl<tml::multi_lambda<_1,_2 , tml::logical_or<_1,tml::eval<P,_2>>>,SEQUENCE>;

High-order algorithms. Lists and iterators:

Turbo implements a set of high-order metafunctions as algorithms provided by the algorithm.hpp header. Those algorithms mimic the most common functional high-order functions to provide building blocks for the rest of the library:

//Compute the adition of a set of numbers at compile-time
template<typename... Ns>
using sum = tml::foldl<tml::lambda<_1,_2 , tml::add<_1,_2>>,tml::zero,tml::list<Ns...>>;

Turbo is a C++ library, but since template-meta-programming seems like a functional language, Turbo takes inspiration from functional languages such as Haskell.
For algorithms, C++ uses an iterator approach, when Haskell uses lists instead. Both approaches has advantages and cons, so what approach we should use?

Turbo doesn't choose between, instead implements both using exactly the same interface! Turbo algorithms are designed to work with sequences, and that sequences could be represented via typelists (tml::list) or iterators:

using numbers = tml::integer_list<1,2,3,4,5>;

using squared = tml::map<tml::lambda<_1 , tml::mul<_1,_1>>,numbers>;
using squared = tml::map<tml::lambda<_1 , tml::mul<_1,_1>>,tml::begin<numbers>,tml::end<numbers>>;

The library provides the header iterator.hpp, which implements metafunctions for iterators manipulation, such as tml::begin, tml::end , tml::rbegin, tml::next , tml::deref , etc. The header provides the declaration of the metafunctions, aliases, and the implementation metafunctions, all ready to be highly customizable by the user. This allows to write iterator-ready custom types specializing a small set of metafunctions only. When its done, everything automagically works!

By default Turbo provides an iterator implementation for typelists (See the example above) and integral values (See the numeric_iterators.hpp header):

//Returns a list filled with the numbers on the interval [begin,end)
template<int begin , int end>
using integer_range = tml::map<tml::function<_>,
                               tml::forward_iterators::make_int<begin>,
                               tml::forward_iterators::make_int<end>
                              >;

TMP-aware static asserting:

The standard static_assert() expects a boolean value as asserting condition. In mostly situations (Even using the Standard Library meta-programming facilities only) that condition comes in the form of a boolean type (Like std::integral_constant<bool,true>).
Turbo implements the macro TURBO_ASSERT() which is designed to work with such types without needing to extract the value via the ::value member:

TURBO_ASSERT( (std::is_integral<int>) , "What happened????" );

Compilation-time static warning:

The only standard way to throw warnings during compilation is the #warning macro. But this warnings are checked during preprocessing time, and what a C++ (meta)programmer needs is a way to generate warnings depending on compile-time values and/or templates.

Turbo implements a STATIC_WARNING() macro, which generates a warning at template instantiation phase. This feature is based in a deprecated attribute trick, which will be standard in C++14. At this time, Turbo uses compiler-specific attributes.

Uniform multiple-SFINAE facilities:

The Standard template to do SFINAE, std::enable_if, disables the instantiation of a template if a certain boolean condition is not guaranteed. As in the static_assert() case explained above, std::enable_if expects a boolean value as condition. Also, the member type ::type of std::enable_if should be explicitly referenced via the common and cumbersome typename ::type construction.

Turbo provides the macros TURBO_ENABLE_IF() and TURBO_DISABLE_IF(), which makes SFINAE clean and easy. For example:

template<typename T , typename SFINAE_FLAG = tml::sfinae_result>
struct f;

template<typename T>
struct f<T , TURBO_ENABLE_IF( std::is_floating_point<T> )>
{};

There are cases where a template should be enabled/disabled depending in many conditions. This could be achieved passing a complex boolean expression to std::enable_if (Or TURBO_ENABLE/DISABLE_IF()).
Instead Turbo implements a so-called sfinae container, that is, a template designed to store multiple SFINAE entities like std::enable_if and behave itself as a big enable_if. That template is enabled (ie declares a ::type member) if and only if all the SFINAE entities passed are enabled.

Also Turbo provides some macros, TURBO_SFINAE_ALL() , TURBO_SFINAE_ANY(), ENABLE_IF(), and DISABLE_IF() to build such sfinae containers easily. The combination of these features makes possible to write multiple-condition SFINAE expressions in a clear and concise syntax:

//Following with the f example above, now we define another f specialization:

template<typename T>
struct f<T , TURBO_SFINAE_ALL( DISABLE_IF( std::is_floating_point<T> ),
                               ENABLE_IF( std::is_default_constructible<T>)
                             )>
{

};

Runtime access to compile-time computations via the tml::to_runtime<T>() function:

The function tml::to_runtime<T>() returns a runtime constant equivalent to the spefied compile-time value T. Its designed to provide a clear interface between the compile-time and runtime sides of a program. For example:

//Compute the range of ints [10,20) at compile-time
using numbers = tml::integer_range<10,20>;

//Print that numbers at runtime:
for( int i : tml::to_runtime<numbers>() )
    std::cout << i << " ";

10 11 12 13 14 15 16 17 18 19

Compile-time floating-point arithmetic:

Turbo implements its own floating-point type to perform compile-time computations. The implementation doesn't follow any specific standard (i.e. IEEE 754), its only a working (on...) implementation with the following characteristics:

  • 32 bit mantissa with no implicit extra 1 (The mantissa is 32 bits wide, and the precision of the resulting number is 32 bits too. Thats done to simplify debugging).
  • 16 bit exponent.
using one   = tml::floating::number<tml::floating::sign_t::positive , -31 , 0x80000000>;
using two   = tml::eval<tml::add<one,one>>; //two is   [+|-30|0x80000000]
using three = tml::eval<tml::add<one,two>>; //three is [+|-30|0xC0000000]

Several metafunction are provided for easy initialization of floating-point values:

using two      = tml::floating::integer<2>;
using sqrt_two = tml::eval<tml::sqrt<two>>;
using pi       = tml::floating::decimal<3,141592654>;

int main()
{
    std::cout << tml::to_string<two>() << std::endl
              << tml::to_runtime<two>() << std::endl;
              
    std::cout << tml::to_string<sqrt_two>() << std::endl
              << tml::to_runtime<sqrt_two>() << std::endl;
              
    std::cout << tml::to_string<pi>() << std::endl
              << tml::to_runtime<pi>() << std::endl;
}

[+|-30|10000000000000000000000000000000]
2
[+|-31|10110101000001001111001100110110]
1.41421
[+|-30|11001001000011111101101010100010]
3.14159

The library is designed to do all the required computations at compile-time with zero runtime overhead when using the results. That means the floating-point values (Actually stored as doubles on the runtime side) should be completely available and known at compile-time.

Given this code, which computes N (10 in the example) consecutive floating-point numbers at compile-time:

template<std::size_t N>
using generate_numbers = tml::foldl<tml::lambda<_1,_2 , tml::lists::func::push_front<_1,tml::add<tml::lists::func::head<_1>,tml::floating::integer<1>>>> , tml::list<tml::floating::integer<0>> , tml::integral_forward_iterators::make_size_t<0> , tml::integral_forward_iterators::make_size_t<N>>;


int main()
{
    using numbers = generate_numbers<10>;
    
    for( double n : tml::to_runtime<numbers>() )
        std::cout << n << std::endl;

}

Yields to the following code for the tml::to_runtime() instance:

_ZN3tml4impl10to_runtimeINS_4listIJNS_8floating6numberILNS3_6sign_tE1ELsn28ELj2684354560EEENS4_ILS5_1ELsn28ELj2415919104EEENS4_ILS5_1ELsn28ELj2147483648EEENS4_ILS5_1ELsn29ELj3758096384EEENS4_ILS5_1ELsn29ELj3221225472EEENS4_ILS5_1ELsn29ELj2684354560EEENS4_ILS5_1ELsn29ELj2147483648EEENS4_ILS5_1ELsn30ELj3221225472EEENS4_ILS5_1ELsn30ELj2147483648EEENS4_ILS5_1ELsn31ELj2147483648EEENS4_ILS5_1ELsn31ELj0EEEEEEE5arrayE:
	.quad	4621819117588971520     # double 1.000000e+01
	.quad	4621256167635550208     # double 9.000000e+00
	.quad	4620693217682128896     # double 8.000000e+00
	.quad	4619567317775286272     # double 7.000000e+00
	.quad	4618441417868443648     # double 6.000000e+00
	.quad	4617315517961601024     # double 5.000000e+00
	.quad	4616189618054758400     # double 4.000000e+00
	.quad	4613937818241073152     # double 3.000000e+00
	.quad	4611686018427387904     # double 2.000000e+00
	.quad	4607182418800017408     # double 1.000000e+00
	.quad	0                       # double 0.000000e+00
	.size	_ZN3tml4impl10to_runtimeINS_4listIJNS_8floating6numberILNS3_6sign_tE1ELsn28ELj2684354560EEENS4_ILS5_1ELsn28ELj2415919104EEENS4_ILS5_1ELsn28ELj2147483648EEENS4_ILS5_1ELsn29ELj3758096384EEENS4_ILS5_1ELsn29ELj3221225472EEENS4_ILS5_1ELsn29ELj2684354560EEENS4_ILS5_1ELsn29ELj2147483648EEENS4_ILS5_1ELsn30ELj3221225472EEENS4_ILS5_1ELsn30ELj2147483648EEENS4_ILS5_1ELsn31ELj2147483648EEENS4_ILS5_1ELsn31ELj0EEEEEEE5arrayE, 88

We all hate C++ mangling, isn't?

Which is exactly the expected behavior: Floating-point values injected into the executable, with no runtime overhead.

Known issues:

The features explained above have some implementation issues (Working on...):

  • Template specialization priority issues. A ISO C++ Standard bug?: The initial implementation of tml::eval consisted on three different cases (Partial specializations), one for each kind of expression the library is capable of evaluate:

    1. Simple values: The result of evaluating a value is the value itself

       using result = tml::eval<tml::Int<0>>; //result is Int<0>
       using result = tml::eval<int>; //result is int
      
    2. Parametrized expressions: Parametrized expressions are not functions, but their parameters could be anything, so they must be evaluated

       using vector = tml::eval<std::vector<tml::function<int>>>; // vector is std::vector<int>
      
    3. Functional expressions: Same as parametrized expressions, but they have a result which should be computed (Extracted)

       using myint = tml::eval<tml::function<int>>; //myint is int
      
    4. Functional expressions with binded arguments: tml::eval could be used to reevaluate an existing (Instanced) functional expression with a new set of parameters

       using result = tml::eval<tml::function<int>,double>; //result is double
      

    In addition to this generic cases, the user could explicitly specialize the implementation of tml::eval (The internal template tml::impl::eval) to make tml::eval work in a custom and specific way. For example:

     struct foo {};
     
     //We customize tml::eval saying the result of evaluating 'foo' is 'int'
     template<>
     struct eval<foo> : public tml::function<int>
     {};
    

    When the specialized expression is complex (Like a template template<typename T> struct bar{};) that specialization has conflicts with the default generic specializations. The common sense says that our custom specialization should be instanced, because bar<T> is more specialized than F<T> (The generic functional case).
    Instead, the generic specialization is instanced or the compilation fails due to ambiguous template specializations (Depending on the compiler).

    This situation was discussed for two weeks, and after some effort we concluded this is an issue on the wording of the ISO Standard, specifically:

    If for each type being considered a given template is at least as specialized for all types, and
    more specialized for some set of types and the other template is not more specialized for any types, or
    {the other template} is not at least as specialized for any types,
    then the given template is more specialized than the other template.

    An ambiguity problem very similar to an official ISO C++ issue which has no official resolution (At June 2014).

    The situation was solved using SFINAE and a custom registry metafunction which specifies if a certain kind of expression overrides the default behavior of tml::eval. Note that its only a workaround, the bug on the template specialization rules is still there.

  • tml::impl::multi_lambda evaluation doesn't work on GCC: The multiple-variable lambda template is defined as follows:

      template<typename... VARIABLES , typename BODY>
      struct multi_lambda
      {
          template<typename... ARGS>
          using result = tml::eval<tml::multi_let<VARIABLES...,
                                                  ARGS...,
                                                  BODY
                                                 >
                                  >;
      };
    

    Later tml::impl::multi_lambda overrides tml::eval to call the ::result template alias properly:

      template<typename... VARIABLES , typename BODY>
      struct overrides_eval<tml::impl::multi_lambda<VARIABLES...,BODY>> : public tml::true_type
      {};
    
      template<typename... VARIABLES , typename BODY , typename... ARGS>
      struct eval<tml::impl::multi_lambda<VARIABLES...,BODY>,tml::list<ARGS...>> :
         public tml::function<typename tml::impl::multi_lambda<VARIABLES...,BODY>::template result<ARGS...>>
      {};
    

    The evaluation of that lambda does not work on GCC. After some discussions and tests I'm sure this code is valid, seems like a GCC bug. This project was reconfigured to use the LLVM/CLang toolchain, where this code works perfectly.

  • The TURBO_ASSERT() macro overloading doesn't work on LLVM/CLang: TURBO_ASSERT() is a macro "overloaded", making possible to pass one or two parameters depending on the use case.
    The macro overloading is an old trick to define macros with different number of parameters, but with the same name. TURBO_ASSERT() was implemented and tested using GCC 4.8.2, but the overloading doesn't work properly on LLVM/CLang toolchain for some reason.

    Currently fixed, was a bug on the SELECT_ARG_3(...) macro.

  • Lambda body and placeholders evaluation: As explained above in the Features entry, Turbo implements lambda expressions as Haskell-like let expressions where the lambda variables are substituted with the value of the parameters at the point of lambda evaluation:

     using l = tml::lambda<_1 , tml::function<_1>>;
     using result = tml::eval<l,int>; //result is int
    

    Even if tml::eval is specialized to take care of placeholders, there are cases when expressions depending on tml::eval evaluation are not correctly evaluated because they have placeholders. Consider this example:

     template<typename F , typename SEQ>
     using any_of = tml::foldl<tml::lambda<_1,_2 , logical_or<_1,tml::eval<F,_2>>>,tml::false_type,SEQ>;
    

    This sentence defines a metafunction any_of, which returns true if almost one element of a sequence evaluates to true certain predicate. Its implemented using a metafunction provided by the Turbo "algorithm.hpp" header, a Haskell-like foldl metafunction (Similar to std::accumulate()). The combination metafunction passed to tml::foldl is written in the form of a binary lambda expression, which computes the logical or between the current state of the computation and the current element of the sequence. "Readable" functional programming at compile-time in C++. Cool, isn't?

    But that doesn't work. Note that the tml::eval written inside the lambda body is instanced (Executed) before the substitution of the lambda variables (The placeholders). To deal with that situations, a template tml::delayed_eval (tml::deval) was designed to hold a tml::eval-like expression inside let expressions. During the let execution, tml::delayed_eval is substituted by tml::eval after variable substitution. The correct tml::any implementation should be:

      template<typename P , typename SEQUENCE>
      using any = tml::foldl<P,tml::lambda<_1,_2 , tml::logical_or<_1,tml::deval<P,_2>>>>,tml::false_type,SEQUENCE>;
    

    This solution successfully solved the problem on unary lambdas, but it doesn't work on multiple-variable lambda expressions, probably because of the curryfication process.

    Fixed, it was a bug on the currifier

README content of the original library implementation:

Turbo provides a set of features to simplify type manipulation and compile-time computations:

Portable to_string() function to print type names at runtime:

Turbo implements demangling for the most common compilers1 to provide a function which returns the std::string representation of a type. For example:

#include "to_string.hpp" 
#include <iostream>
#include <vector>

int main()
{
    std::cout << mpl::to_string<std::vector<int>>() << std::endl;
}

Output:

vector<int>

[1] GCC and MSVC only demangling implementation yet.

Compile-time basic types wrappers: Compile-time arithmetic

Turbo provides a set of predefined templates which are equivalent to the most common C++ basic types, such as bool, char, integer, etc: mpl::boolean, mpl::character, mpl::integer.

The function mpl::to_string() is specialized to provide a natural and readable string value of the wrappers. For example:

#include "basic_types.hpp"
#include "to_string.hpp"

#include <iostream>

int main()
{
  using bool_value = mpl::boolean<true>;
  using char_value = mpl::character<'a'>;
  using integer_value = mpl::integer<10>;
  
  std::cout << mpl::to_string<bool_value>() << " ";
  std::cout << mpl::to_string<char_value>() << " ";
  std::cout << mpl::to_string<integer_value>();
}

Output:

true a 10

Compile-time arithmetic:

The library provides a set of default metafunctions to perform arithmetic, bitshift, logical, and comparison operations with the basic type wrappers. Type casting is correctly performed in that computations to avoid signed-unsigned overflows and other related problems:

#include "operators.hpp"
#include "basic_types.hpp"

int main()
{
  using a = mpl::uinteger<1>;
  using b = mpl::integer<2>;
  
  using c = mpl::add<a,b>; //c is mpl::integer<3>
}

Expression templates: Operators overloading for a simple and more readable expression syntax

Turbo overloads the most common operators to implement expression templates and provide, within type inspection through the decltype specifier, the functions described above in a more comfortable syntax. This is specially useful when the expressions are complex. For example:

#include "operators.hpp"
#include "basic_types.hpp"
#include "expressions.hpp"

int main()
{
  using x = mpl::integer<1>;
  using y = mpl::integer<2>;
  using z = mpl::integer<3>;
  
  //The following expression is equivalent to
  //mpl::add<mpl::add<mpl::mul<x,x>,mpl::mul<y,y>>,mpl::mul<z,z>>;:

  using square_length = decltype( x()*x() + y()*y() + z()*z() );
}

NOTE: This is an example of the computation of the length of a 3d vector at compile-time. The example computes the square-length of the vector, because the square_root function still is not implemented.

Typelists

Turbo implements variadic-template based typelists through the mpl::list class:

#include "list.hpp"
#include "to_string.hpp"

using list = mpl::list<bool,char,int,float,double>;

int main()
{
  std::cout << mpl::to_string<list>() << std::endl;
}

[bool,char,int,float,double]

List operations:

The library provides a set of list operations available for typelists: Splitting, concating, inserting, erasing, etc:

#include "list.hpp"
#include "to_string.hpp"

using list = mpl::list<bool,char,int,float,double>;

using index = mpl::index_of<list,float>; //index is mpl::size_t<3>
using a = typename mpl::split<list,mpl::size_t<2>>::left;
using b = typename mpl::split<list,mpl::size_t<2>>::right;
using c = mpl::concat<b,a>;



int main()
{
  std::cout << mpl::to_string<list>() << std::endl;
  std::cout << mpl::to_string<a>() << std::endl;
  std::cout << mpl::to_string<b>() << std::endl;
  std::cout << mpl::to_string<c>() << std::endl;
  
}

[bool,char,int,float,double] [bool,char,int] [float,double] [float,double,bool,char,int]

Compile-time list sorting

Using the list operations showed above Turbo implements a sorting metafunction1 which can be used to sort types with the specified criteria. For example:

#include "list.hpp"
#include "sort.hpp"

using list = mpl::list<double,char,float,int,

template<typename T , typename U>
using comparer = mpl::boolean<(sizeof(T) >= sizeof<(U))>;

using sorted_list = mpl::sort<list,comparer>;

int main()
{
  std::cout << mpl::to_string<sorted_list>() << std::endl;
}

[double,int,float,char]

[1] mpl::sort uses the quickosrt sorting algorithm by default, but this metafunction is parametrized to allow specifying other algorithms. The metafunction is defined as:

 template<
          typename LIST , 
          template<typename,typename> class COMPARER = mpl::greather_than , 
          template<typename,template<typename,typename>class> class ALGORITHM = mpl::qsort
         >
 using mpl::sort = /* ... */

so you can implement your own sorting algorithm and pass it to the metafunction. For example:

 template<typename LIST , template<typename,typename> class COMPARER>
 struct my_stupid_sorting_algorithm
 {
        using result = LIST;
 };

 using list = mpl::list<int,char,bool>;
 using sorted_list = mpl::sort<list,mpl::less_than,my_stupid_sorting_algorithm>;

Iterators and loops

Turbo implements the iterator dessign pattern to provide an easy way to trasverse ranges or intervals, such as numeric intervals or a part of a typelist. The library defines three types of iterators:

  • Forward iterators: Are iterators designed to trasverse a range forwards (From begin to end).
  • Forward iterators: This type of iterators are designed to trasverse a range form its end to its begin (In the backwards direction).
  • Bidirectional iterators [DEPRECATED]: Are iterators which can advance in any direction.

The library provides a set of metafunctions to work with iterators:

  • Functions to get iterators: Are functions to create iterators from things to trasverse it: mpl::begin , mpl::end , mpl::rbegin , mpl::rend.

  • Functions to manipulate iterators: mpl::next , mpl::previous[DEPRECATED]. All of the metafunctions above can be specialized to implement user-defined iterators. In fact the library provides specializations to work with typelists and integral numbers. For example:

    #include "iterators.hpp" #include "numeric_iterators.hpp" #include "list.hpp" #include "basic_types.hpp"

    using list = mpl::list<bool,char,int,float>; using begin = mpl::begin; using end = mpl::end;

    /* A metafunction to print values of a typelist: */

    teplate<typename BEGIN , typename END> struct print_list { static void execute() { std::cout << mpl::to_string() << std::endl;

         print_list<mpl::next<BEGIN>,END>::execute();
     }
    

    };

    template struct print_list<END,END> { static void execute() {} };

    /* Possible usage: */

    using printer = print_list<mpl::begin , mpl::end>; using partial_printer = print_list<decltype( mpl::begin() + mpl::size_t<2>() ) , mpl::end>;

    int main() { printer::execute(); std::cout << std::endl; partial_printer::execute(); }

bool char int float

int float

For integral types the library provides a set of utility functions to make iterators from integral values. The example above could be rewritten to work with unsigned ints:

using printer = print_list<mpl::make_uinteger_backward_iterator<10> , mpl::make_uinteger_backward_iterator<0>>;

10
9
8
7
6
5
4
3
2
1

Loops: for and for each

A common problem with template-meta-programming and variadic templates is to execute an operation over a set of values (types). That leads to witing recursive metafunctions everytime we need to do that kind of operations.

Turbo provides the metaloops mpl::for_loop and mpl::for_each to simplify the implementation of that kind of things. That loops works through iterators: What the loops do is to execute the specified kernel (The operation to be performed) through the range represented by the iterators. Finally, the loop returns the result.

mpl::for_each

This loop is designed to apply the specified kernel to every type from a set of types, and return a typelist filled with the set of applications. Its equivalent "runtime" code is:

template<typename iterator_type , typename result_type> std::vector<result_type> for_each(iterator_type begin , iterator_type end , result_type(*)(typename iterator_type::value_type) kernel) { std::vector<result_type> output;

for( auto& it = begin ; it != end ; ++it)
  output.push_back( kernel(*it) );

return output;  

}

A kernel is a metafunction of the form:

 template<typename CURRENT>
 struct kernel
 {
  using result = /* Operation involving CURRENT */
 };

In other words, a one parameter function.

What mpl::for_each returns is the list of applications, that is, the set of kernel::result from each type. For example:

using list = mpl::list<bool,char,float,int,double>;
using begin = mpl::begin<list>;
using end = mpl::end<list>;

//A kernel: It returns the size of the type specified
template<typename T>
struct compute_sizeof
{
  using result = mpl::size_t<sizeof(T)>;
};

using result = mpl::for_each<begin,end,compute_sizeof>;

int main()
{
  std::cout << mpl::to_string<result>() << std::endl;
}

Output:

[1,1,4,4,8]

Note that a kernel is a metafunction of one parameter which returns via a result alias. Thats exatly the signature of mpl::function, so you could use mpl::function to simplify the implementation of a kernel. The example above could be rewriten as:

 template<typename T>
 using compute_sizeof = mpl::function<mpl::size_t<sizeof(T)>>;

In addition, you could specify a filter (A boolean predicate) to discard elements of the input which does not fullfill a requeriment. Following with the example above:

 ...
 
 template<typename T>
 using filter = mpl::boolean<sizeof(T) % 2 == 0>;
 
 using result = mpl::for_each<begin,end,compute_sizeof,filter>;
 
 ...

Now the output is:

[4,4,8]

mpl::for_loop

mpl::for_loop is designed to execute iterative computations, in other words, does a loop over a range, and the kernel does computations over that range, storing the result and using the previous value of the result. This could be viewed as a for loop with an aux varialbe which stores the result of the computation, and the body of that loop (The kernel acts as the body of the loop). For example:

int result;

for(auto& it = begin ; it != end ; ++it) {
result = *it * result; }

So the kernel has two parameters: The current value of the iterator and the previous value of the result:

template<typename CURRENT , typename PREVIOUS_RESULT> struct kernel { using result = /* ... */ }; The loop passes the result of the current kernel application to the next iteration. So the loop needs the initial value of the "aux variable". mpl::for_loop is defined as follows:

template<typename BEGIN , typename END , typename INITIAL_VALUE , template<typename,typename> class KERNEL> using for_loop = /.../

In addition, a kernel of a for loop must define a public boolean constant that specifies if the loop should be aborted. In other words, the user could specify a break condition for the loop through the kernel:

template<typename CURRENT , typename PREVIOUS_RESULT> struct kernel { using result = /* ... / static const bool abort = / ... */ };

An example of the use of mpl::for_loop could be the computation of the summation of a range of numbers:

using begin = mpl::make_uinteger_forward_iterator<0>; using end = mpl::make_uinteger_forward_iterator<10>;

template<typename CURRENT_VALUE , typename PREVIOUS_RESULT> struct kernel : public mpl::no_abort_kernel //This defines the abort flag as false { using result = mpl::add<PREVIOUS_RESULT,CURRENT_VALUE>; };

using result = mpl::for_loop<begin,end,mpl::uinteger<0>,kernel>;

int main() { std::cout << mpl::to_string() << std::cout; } Output:

45

Compile-time fixed-point arithmetic

Turbo implements decimal fixed-point arithmetic through the mpl::fixed_point type. This type provides compile-time fixed-point arithmetic through specializations of the arithmetic metafunctions described above.

mpl::fixed_point implements decimal fixed-point numbers with the specified precision (The number of digits which represent the fractional part of the number):

template<mpl::fixed_point_bits BITS , mpl::fixed_point_precission PRECISION>
struct fixed_point {};

By default mpl::fixed_point_bits is a long long int, that is, is 64 bits length. So mpl::fixed_point could represent decimal numbers up to 19 digits. Of course that 19 digits include the fractional digits. By default Turbo sets the precision of mpl::fixed_point at 8 digits.

The way to instantiate fixed point numbers is tu cumbersome, because you have to take into account the precision of the number and provide the full integer number. For example:

using pi = mpl::fixed_point<314150000,8>; //3,1415 with 8 digits precision 

To deal with that problem, the library provides the alias mpl::decimal, which implements decimal scientific notation:

using pi = mpl::decimal<31415,-4>; //31415 x 10^-4 (3,1415)

Of course mpl::fixed_point specializes mpl::to_string :

 #include "fixed_point.hpp"
 #include "expressions.hpp"
 #include "to_string.hpp"
 
 using pi      = mpl::decimal<314159265,-8>; //3,14159265
 using radious = mpl::decimal<10>; //10
 using circle_length = decltype( mpl::decimal<2>() * pi() * radious() );
 
 int main()
 {
  std::cout << "Radious: " << mpl::to_string<radious>() << std::endl;
  std::cout << "Circle length: " << mpl::to_string<circle_length>() << std::endl;
 }

Radious: 10
Circle length: 62,831853

Trigonometric functions

In addition to the arithmetic operations shared with the integral values, Turbo implements compile-time trigonometric functions such as sine and cosine through Taylor-McLaurin series:

#include "trigonometry.hpp"
#include "fixed_point.hpp"
#include "to_string.hpp"

using deg_0 = mpl::decimal<0>;
using deg_45 = decltype( math::pi() / mpl::decimal<4>() );
using deg_90 = decltype( math::pi() / mpl::decimal<2>() );

int main()
{
  std::cout << "sin(0º) = "  << mpl::to_string<math::sin<deg_0>>() << std::endl;
  std::cout << "sin(45º) = " << mpl::to_string<math::sin<deg_45>>() << std::endl;
  std::cout << "sin(90º) = " << mpl::to_string<math::sin<deg_90>>() << std::endl;
  
  std::cout << "cos(0º) = "  << mpl::to_string<math::cos<deg_0>>() << std::endl;
  std::cout << "cos(45º) = " << mpl::to_string<math::cos<deg_45>>() << std::endl;
  std::cout << "cos(90º) = " << mpl::to_string<math::cos<deg_90>>() << std::endl;
}

sin(0º) = 0
sin(45º) = 0,707107
sin(90º) = 1
cos(0º) = 1
cos(45º) = 0,07107
cos(90º) = 1e-08

As the example shows, the implementation has little precision errors (cos(90º) should be zero). Turbo uses a MacLaurin series aproximation of 10 terms by default, but the arithmetric functions are parametrized to allow specifying the number of terms used in the aproximations:

using cos_deg_90 = math::cos<deg_90,mpl::uinteger<200>>; //cos(90º) computed using 200 terms. 

Square-root

The library implements a square root function, math::sqrt, computing the value through the Newton's method to aproximate function roots:

using two = mpl::decimal<2>; using result = math::sqrt;

int main() { std::cout << mpl::to_string() << std::endl; } Output:

1,4142

Compile-time matrix algebra

Turbo implements 3x3 and 4x4 matrices to provide compile-time matrix algebra. It supports matrix addition, substraction, and multiplication. For example:

#include "matrix3x3.hpp"

using unity = math::unity3x3mpl::decimal using a = decltype( (unity() * unity()) * mpl::decimal<4>() ); using b = decltype( a() + a() );

int main() { std::cout << mpl::to_string() << std::endl; }

| 8 0 0 |
| 0 8 0 |
| 0 0 8 |

Compile-time 2d/3d transformations

In adition to matrices, Turbo implements 2d/3d/4d vectors and provides transformation matrices such as rotations, scales, translations, etc. For example:

#include "matrix4x4.hpp" #include "vector.hpp"

using v1 = math::vec3<mpl::decimal<1> , mpl::decimal<1> , mpl::decimal<1>>; using translation = mpl::vector<mpl::decimal<1> , mpl::decimal<0> , mpl::decimal<0>>; using angle = decltype(math::pi() / mpl::decimal<2>()); using transformation = decltype( math::translate() * mpl::rotate<angle,math::x_axis>() ); using v2 = decltype( transformation() * v1() );

int main() { std::cout << mpl::to_string() << std::endl; std::cout << mpl::to_string() << std::endl; }

(1,1,1)
(2,1,-1)

Compile-time string manipulation

Turbo explodes C++11 generalized constant expressions to manipulate raw strings and create types (metavariables) which the library can work with using template metaprogramming. For example:

#include "string.hpp"
#include "to_string.hpp"

//TURBO_STRING_VARIABLE() macro defines a new string metavariable which holds the specified string:

TURBO_STRING_VARIABLE( hello , "hello " );
TURBO_STRING_VARIABLE( world , "world!" );

using hello_world = tml::concat<hello,world>;

int main()
{
    std::cout << tml::to_string<hello_world>() << std::endl;
}

hello world!

Future features:

I'm currently working in a compile-time time manipulation library (tml::chrono namespace), based on the Standard std::chrono library.
Also I'm working on compile-time random number generation facilities, using the features of tml::chrono as seed.

More Repositories

1

ctti

Compile Time Type Information for C++
C++
572
star
2

tinyrefl

A work in progress minimal C++ static reflection API and codegen tool.
C++
255
star
3

siplasplas

A library for C++ reflection and introspection
C++
195
star
4

snail

Continuation-ready container algorithms from STL algorithms
C++
60
star
5

unittest

C++ unit testing and mocking made easy
C++
55
star
6

Polyop

Overridable universal operator overloading for C++14
C++
20
star
7

gcc-concepts-bugs

A repository to host C++ Concepts Lite TS examples, to help with GCC bug reporting
C++
15
star
8

spacevim

My vim SpaceVim-based config
Vim Script
15
star
9

coroutine

A simple stackful coroutine implementation in C++11
C++
10
star
10

libexecstream

CMake-ready libexecstream library
C++
8
star
11

strings

Examples of string implementation techniques in C++11/14
C++
8
star
12

dotfiles

My personal dotfiles repository
Shell
8
star
13

cppascii

Code snippets, ejemplos, utilidades, etc
C++
7
star
14

clang-conan-packages

conan.io recipes for llvm and clang libraries
Python
7
star
15

meetingcpp2016

Slides and other stuff from my meetingcpp 2016 talk
CMake
5
star
16

cpp-dod-tests

Performance tests for an encapsulation-enabled Data Oriented Design implementation
Assembly
5
star
17

cppcon2019

Materials of CppCon 2019 talk "Next Generation Unit Testing Using Static Reflection"
5
star
18

meetingcpp2018

Slides from "C++, QML, and static reflection" talk at Meeting C++ 2018
4
star
19

tiny-metaprogramming-library

A practical example of high-level metaprogramming as a growing up library
C++
4
star
20

raytracer

My implementation of "Raytracing In One Weekend" by Peter Shirley
C++
3
star
21

Cpp11CustomLogClass

C++11 custom Log class. Code example of a response to stackoverflow question: http://stackoverflow.com/questions/17595957/operator-overloading-in-c-for-logging-purposes/
Shell
3
star
22

traces

Type safe Tracy API
C++
3
star
23

telegram-reactive

Example C++ telegram bot using a reactive API
C++
3
star
24

rainbow

C++
2
star
25

uftrace-docker

Docker image for uftracer C/C++ profiler
Dockerfile
2
star
26

C--

The sandbox where we show our increasingly depressing C++ skills
C++
2
star
27

ProyectoOmegauhm

Web de consulta y recursos centralizados para los alumnos de FDI
CSS
2
star
28

TemplateMetaprogramming101

Scripts, utilities, and examples for my Modern C++ Template Metaprogramming workshops
C++
1
star
29

worm

C++
1
star
30

TTL

C++11 Tuple Template Library
C++
1
star
31

xml

The neXt Metaprogramming Library
1
star
32

WALLE

Prácticas de Tecnología de la Programación
Java
1
star
33

PracticasIA

Java
1
star
34

efsw

conan.io package for the Entropia Filesystem Watcher library
Python
1
star
35

cmake

CMake
1
star
36

biicode-posts

C
1
star
37

cucaracha

An emulator for a CPU of my own
Go
1
star
38

TerminalWorkspace

My personal zsh, tmux, and vim configurations. No guarantees, works for me at least.
Shell
1
star