PyTorch RoFormer & RoFormer-V2
RoFormer模型和RoFormer-V2模型
更新
- 2022/05/18
添加paddle版本RoFormerV2在分类任务上的训练结果。
- 2022/05/11
感谢苏神提醒,添加了一个注释,其中RoFormerV2*表示未经多任务学习的RoFormerV2模型。
- 2022/05/01
添加clue分类任务
的代码和dev集结果,代码在examples/clue
文件夹,缺少啥依赖安装啥,比如需要这个pip install -U accelerate
。
- 2022/04/30
有个细节需要注意一下,苏神在微调时无论输入是text
还是text pair
类型时,token_type_id
都置为了0。
如果想要使用与苏神保持一致,那么可以在tokenizer
时候设置return_token_type_ids=False
,这样模型会在内部处理。
否则对于text pair
类型时,会返回与0,1
两种类型的token_type_id
- 2022/04/02
(1)修改RoFormerForCausalLM,支持roformer-sim
并提供相关的例子,请见examples/test_sim.py
。
(2)修改apply_rotary
实现方式,看起来更简单。
def apply_rotary(x, sinusoidal_pos=None):
if sinusoidal_pos is None:
return x
sin, cos = sinusoidal_pos
# x.shape [batch, seq_len, 2]
x1, x2 = x[..., 0::2], x[..., 1::2]
# [cos_nθ, -sin_nθ] [x1]
# [sin_nθ, cos_nθ] [x2]
# => [x1 * cos_nθ - x2 * sin_nθ, x1 * sin_nθ + x2 * cos_nθ]
# 苏神的rotary,使用了下面的计算方法。
# return torch.stack([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1).flatten(-2, -1)
# 考虑到矩阵乘法torch.einsum("bhmd,bhnd->bhmn", q, k),因此可以直接在最后一个维度拼接(无需奇偶交错)
return torch.cat([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1)
- 2022/03/21 添加
roformer-v2
的权重, 注:必须使用本仓库的代码,不能使用transformers仓库的代码!!!
安装
# v2版本
pip install roformer>=0.4.3
# v1版本(代码已经加入到huggingface仓库,请使用新版本的transformers)
pip install -U transformers
评测对比
CLUE-dev榜单分类任务结果,base+large版本。
iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | avg | |
---|---|---|---|---|---|---|---|---|
BERT | 60.06 | 56.80 | 72.41 | 79.56 | 73.93 | 78.62 | 83.93 | 72.19 |
RoBERTa | 60.64 | 58.06 | 74.05 | 81.24 | 76.00 | 87.50 | 84.50 | 74.57 |
RoFormer | 60.91 | 57.54 | 73.52 | 80.92 | 76.07 | 86.84 | 84.63 | 74.35 |
RoFormerV2* | 60.87 | 56.54 | 72.75 | 80.34 | 75.36 | 80.92 | 84.67 | 73.06 |
GAU-α | 61.41 | 57.76 | 74.17 | 81.82 | 75.86 | 79.93 | 85.67 | 73.8 |
RoFormer-pytorch(本仓库代码) | 60.60 | 57.51 | 74.44 | 80.79 | 75.67 | 86.84 | 84.77 | 74.37 |
RoFormerV2-pytorch(本仓库代码) | 62.87 | 59.03 | 76.20 | 80.85 | 79.73 | 87.82 | 91.87 | 76.91 |
GAU-α-pytorch(Adafactor) | 61.18 | 57.52 | 73.42 | 80.91 | 75.69 | 80.59 | 85.5 | 73.54 |
GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.68 | 57.95 | 73.08 | 81.02 | 75.36 | 81.25 | 83.93 | 73.32 |
RoFormerV2-large-pytorch(本仓库代码) | 61.75 | 59.21 | 76.14 | 82.35 | 81.73 | 91.45 | 91.5 | 77.73 |
Chinesebert-large-pytorch | 61.25 | 58.67 | 74.70 | 82.65 | 79.63 | 87.83 | 84.97 | 75.67 |
RoFormerV2-base-paddle | 63.76 | 59.53 | 77.06 | 81.58 | 81.56 | 87.83 | 86.73 | 76.87 |
RoFormerV2-large-paddle | 64.02 | 60.08 | 77.92 | 82.87 | 83.9 | 92.43 | 86.87 | 78.30 |
CLUE-1.0-test榜单分类任务结果,base+large版本。
iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | avg | |
---|---|---|---|---|---|---|---|---|
RoFormer-pytorch(本仓库代码) | 59.54 | 57.34 | 74.46 | 80.23 | 73.67 | 80.69 | 84.57 | 72.93 |
RoFormerV2-pytorch(本仓库代码) | 63.15 | 58.24 | 75.42 | 80.59 | 74.17 | 83.79 | 83.73 | 74.16 |
GAU-α-pytorch(Adafactor) | 61.38 | 57.08 | 74.05 | 80.37 | 73.53 | 74.83 | 85.6 | 72.41 |
GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.54 | 57.67 | 72.44 | 80.32 | 72.97 | 76.55 | 84.13 | 72.09 |
RoFormerV2-large-pytorch(本仓库代码) | 61.85 | 59.13 | 76.38 | 80.97 | 76.23 | 85.86 | 84.33 | 74.96 |
Chinesebert-large-pytorch | 61.54 | 58.57 | 74.8 | 81.94 | 76.93 | 79.66 | 85.1 | 74.08 |
RoFormerV2-large-paddle | 64.23 | 59.99 | 76.85 | 81.97 | 76.57 | 84.48 | 83.37 | 75.35 |
注:
- 其中RoFormerV2*表示的是未进行多任务学习的RoFormerV2模型,该模型苏神并未开源,感谢苏神的提醒。
- 其中不带有pytorch后缀结果都是从GAU-alpha仓库复制过来的。
- 其中带有pytorch后缀的结果都是自己训练得出的。
- 苏神代码中拿了cls标签后直接进行了分类,而本仓库使用了如下的分类头,多了2个dropout,1个dense,1个relu激活。
- paddle版本的代码进行了grid search!
class RoFormerClassificationHead(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x) # 这里是relu
x = self.dropout(x)
x = self.out_proj(x)
return x
Tips:
- 实验环境RTX 3090
Leadborad截图
Roformer-sim测试例子
import torch
import numpy as np
from roformer import RoFormerForCausalLM, RoFormerConfig
from transformers import BertTokenizer
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 可选以下几个。
# junnyu/roformer_chinese_sim_char_small, junnyu/roformer_chinese_sim_char_base
# junnyu/roformer_chinese_sim_char_ft_small, roformer_chinese_sim_char_ft_base
pretrained_model = "junnyu/roformer_chinese_sim_char_base"
tokenizer = BertTokenizer.from_pretrained(pretrained_model)
config = RoFormerConfig.from_pretrained(pretrained_model)
config.is_decoder = True
config.eos_token_id = tokenizer.sep_token_id
config.pooler_activation = "linear"
model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config)
model.to(device)
model.eval()
def gen_synonyms(text, n=100, k=20):
''''含义: 产生sent的n个相似句,然后返回最相似的k个。
做法:用seq2seq生成,并用encoder算相似度并排序。
'''
# 寻找所有相似的句子
r = []
inputs1 = tokenizer(text, return_tensors="pt")
for _ in range(n):
inputs1.to(device)
output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。
r.append(output)
# 对相似的句子进行排序
r = [i for i in set(r) if i != text and len(i) > 0]
r = [text] + r
inputs2 = tokenizer(r, padding=True, return_tensors="pt")
with torch.no_grad():
inputs2.to(device)
outputs = model(**inputs2)
Z = outputs.pooler_output.cpu().numpy()
Z /= (Z**2).sum(axis=1, keepdims=True)**0.5
argsort = np.dot(Z[1:], -Z[0]).argsort()
return [r[i + 1] for i in argsort[:k]]
out = gen_synonyms("广州和深圳哪个好?")
print(out)
# ['深圳和广州哪个好?',
# '广州和深圳哪个好',
# '深圳和广州哪个好',
# '深圳和广州哪个比较好。',
# '深圳和广州哪个最好?',
# '深圳和广州哪个比较好',
# '广州和深圳那个比较好',
# '深圳和广州哪个更好?',
# '深圳与广州哪个好',
# '深圳和广州,哪个比较好',
# '广州与深圳比较哪个好',
# '深圳和广州哪里比较好',
# '深圳还是广州比较好?',
# '广州和深圳哪个地方好一些?',
# '广州好还是深圳好?',
# '广州好还是深圳好呢?',
# '广州与深圳哪个地方好点?',
# '深圳好还是广州好',
# '广州好还是深圳好',
# '广州和深圳哪个城市好?']
模型权重对照表
中文模型 roformer-v2
huggingface.co | bert4keras |
---|---|
roformer_v2_chinese_char_small | chinese_roformer-v2-char_L-6_H-384_A-6.zip (download code:ttn4) |
roformer_v2_chinese_char_base | chinese_roformer-v2-char_L-12_H-768_A-12.zip (download code:pfoh) |
roformer_v2_chinese_char_large | chinese_roformer-v2-char_L-24_H-1024_A-16.zip (download code:npfv) |
中文模型 roformer-v1
huggingface.co | bert4keras |
---|---|
roformer_chinese_base | chinese_roformer_L-12_H-768_A-12.zip (download code:xy9x) |
roformer_chinese_small | chinese_roformer_L-6_H-384_A-6.zip (download code:gy97) |
roformer_chinese_char_base | chinese_roformer-char_L-12_H-768_A-12.zip (download code:bt94) |
roformer_chinese_char_small | chinese_roformer-char_L-6_H-384_A-6.zip (download code:a44c) |
roformer_chinese_sim_char_base | chinese_roformer-sim-char_L-12_H-768_A-12.zip (download code:2cgz) |
roformer_chinese_sim_char_small | chinese_roformer-sim-char_L-6_H-384_A-6.zip (download code:h68q) |
roformer_chinese_sim_char_ft_base | chinese_roformer-sim-char-ft_L-12_H-768_A-12.zip (download code:w15n) |
roformer_chinese_sim_char_ft_small | chinese_roformer-sim-char-ft_L-6_H-384_A-6.zip (download code:gty5) |
英文模型(使用electra的训练方法在openwebtext上训练的small模型(rotary value = True))
huggingface.co |
---|
roformer_small_generator |
roformer_small_discriminator |
Roformer-v2 MLM测试
import torch
import tensorflow as tf
from transformers import BertTokenizer
from roformer import RoFormerForMaskedLM, TFRoFormerForMaskedLM
text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_v2_chinese_char_base")
pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_v2_chinese_char_base")
tf_model = TFRoFormerForMaskedLM.from_pretrained(
"junnyu/roformer_v2_chinese_char_base", from_pt=True
)
pt_inputs = tokenizer(text, return_tensors="pt")
tf_inputs = tokenizer(text, return_tensors="tf")
# pytorch
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).logits[0]
pt_outputs_sentence = "pytorch: "
for i, id in enumerate(tokenizer.encode(text)):
if id == tokenizer.mask_token_id:
tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1])
pt_outputs_sentence += "[" + "||".join(tokens) + "]"
else:
pt_outputs_sentence += "".join(
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
)
print(pt_outputs_sentence)
# tf
tf_outputs = tf_model(**tf_inputs, training=False).logits[0]
tf_outputs_sentence = "tf: "
for i, id in enumerate(tokenizer.encode(text)):
if id == tokenizer.mask_token_id:
tokens = tokenizer.convert_ids_to_tokens(tf.math.top_k(tf_outputs[i], k=5)[1])
tf_outputs_sentence += "[" + "||".join(tokens) + "]"
else:
tf_outputs_sentence += "".join(
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
)
print(tf_outputs_sentence)
# small
# pytorch: 今天[的||,||是||很||也]很好,我[要||会||是||想||在]去公园玩。
# tf: 今天[的||,||是||很||也]很好,我[要||会||是||想||在]去公园玩。
# base
# pytorch: 今天[我||天||晴||园||玩]很好,我[想||要||会||就||带]去公园玩。
# tf: 今天[我||天||晴||园||玩]很好,我[想||要||会||就||带]去公园玩。
# large
# pytorch: 今天[天||气||我||空||阳]很好,我[又||想||会||就||爱]去公园玩。
# tf: 今天[天||气||我||空||阳]很好,我[又||想||会||就||爱]去公园玩。
Roformer-v1 MLM测试
import torch
import tensorflow as tf
from transformers import RoFormerForMaskedLM, RoFormerTokenizer, TFRoFormerForMaskedLM
text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base")
pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
tf_model = TFRoFormerForMaskedLM.from_pretrained(
"junnyu/roformer_chinese_base", from_pt=True
)
pt_inputs = tokenizer(text, return_tensors="pt")
tf_inputs = tokenizer(text, return_tensors="tf")
# pytorch
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).logits[0]
pt_outputs_sentence = "pytorch: "
for i, id in enumerate(tokenizer.encode(text)):
if id == tokenizer.mask_token_id:
tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1])
pt_outputs_sentence += "[" + "||".join(tokens) + "]"
else:
pt_outputs_sentence += "".join(
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
)
print(pt_outputs_sentence)
# tf
tf_outputs = tf_model(**tf_inputs, training=False).logits[0]
tf_outputs_sentence = "tf: "
for i, id in enumerate(tokenizer.encode(text)):
if id == tokenizer.mask_token_id:
tokens = tokenizer.convert_ids_to_tokens(tf.math.top_k(tf_outputs[i], k=5)[1])
tf_outputs_sentence += "[" + "||".join(tokens) + "]"
else:
tf_outputs_sentence += "".join(
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
)
print(tf_outputs_sentence)
# pytorch: 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。
# tf: 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。
手动权重转换
python convert_roformer_original_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path=xxxxxx/chinese_roformer_L-12_H-768_A-12/bert_model.ckpt \
--bert_config_file=pretrained_models/chinese_roformer_base/config.json \
--pytorch_dump_path=pretrained_models/chinese_roformer_base/pytorch_model.bin
tf与pytorch精度对齐
small版本
bert4keras vs pytorch
mean diff : tensor(5.9108e-07)
max diff : tensor(5.7220e-06)
bert4keras vs tf2.0
mean diff : tensor(4.5976e-07)
max diff : tensor(3.5763e-06)
base版本
python compare_model.py
bert4keras vs pytorch
mean diff : tensor(4.3340e-07)
max diff : tensor(5.7220e-06)
bert4keras vs tf2.0
mean diff : tensor(3.4319e-07)
max diff : tensor(5.2452e-06)
参考
https://github.com/pengming617/bert_classification
https://github.com/bojone/bert4keras
https://github.com/ZhuiyiTechnology/roformer
https://github.com/lonePatient/NeZha_Chinese_PyTorch
https://github.com/lonePatient/TorchBlocks
https://github.com/huggingface/transformers
Citation
Bibtex:
@misc{su2021roformer,
title={RoFormer: Enhanced Transformer with Rotary Position Embedding},
author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
year={2021},
eprint={2104.09864},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@techreport{roformerv2,
title={RoFormerV2: A Faster and Better RoFormer - ZhuiyiAI},
author={Jianlin Su, Shengfeng Pan, Bo Wen, Yunfeng Liu},
year={2022},
url="https://github.com/ZhuiyiTechnology/roformer-v2",
}