• Stars
    star
    142
  • Rank 258,495 (Top 6 %)
  • Language
    Python
  • Created almost 7 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Machine Learning and having it Deep and Structured (MLDS) in 2018 spring

MLDS2018SPRING

Machine Learning and having it deep and structured (MLDS) at NTU 2018 Spring.

This course has four homeworks, group by group. The four homeworks are as follows:

  1. Deep Learning Theory
  2. Sequence-to-sequence Model
  3. Deep Generative Model
  4. Deep Reinforcement Learning

Browse this course website for more details.

Table of Contents

  1. Deep Learning Theory
  2. Sequence-to-sequence Model
  3. Deep Generative Model
  4. Deep Reinforcement Learning

Results of Four Homeworks

1. Deep Learning Theory

1.1 Deep vs Shallow

1.2 Optimization

1.3 Generalization

2. Sequence-to-sequence Model

2.1 Video caption generation

2.2 Chat-bot

3. Deep Generative Model

3.1 Image Generation

  • README
  • Image Generation: 100% (25/25) Pass Baseline
./gan-baseline/baseline_result_gan.png

3.2 Text-to-Image Generation

  • README
  • Text-to-Image Generation: 100% (25/25) Pass Baseline
Testing Tags ./gan-baseline/baseline_result_cgan.png
blue hair blue eyes


blue hair green eyes


blue hair red eyes


green hair blue eyes


green hair red eyes

3.3 Style Transfer

4. Deep Reinforcement Learning

4.1 Policy Gradient

  • README
  • Policy Gradient: Mean Rewards in 30 Episodes = 16.466666666666665

4.2 Deep Q Learning

  • README
  • Deep Q Learning: Mean Rewards in 100 Episodes = 73.16

4.3 Actor-Critic