• Stars
    star
    346
  • Rank 122,430 (Top 3 %)
  • Language
    C++
  • License
    Apache License 2.0
  • Created about 7 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Daquexian's NNAPI Library. ONNX + Android NNAPI

DNNLibrary

Build Status Download PRs Welcome

Run ONNX models on your Android phone using the new NNAPI !

Android 8.1 introduces Neural Networks API (NNAPI). It's very exciting to run a model in the "native" way supported by Android System. :)

DNNLibrary is a wrapper of NNAPI ("DNNLibrary" is for "daquexian's NNAPI library). It lets you easily make the use of the new NNAPI introduced in Android 8.1. You can convert your onnx model into daq and run the model directly.

For the Android app example, please check out dnnlibrary-example.

Telegram Group: link, QQ Group (Chinese): 948989771, answer: ๅ“ˆๅ“ˆๅ“ˆๅ“ˆ

Screenshot

This screenshot is MobileNet v2, both float version and 8-bit quantized version

Screenshot image mobilenetv2

Preparation

Please make sure the Android System on your phone is 8.1+, or you may want to use an 8.1+ emulator.

Introduction

Android 8.1 introduces NNAPI. However, NNAPI is not friendly to normal Android developers. It is not designed to be used by normal developers directly. So I wrapped it into a library.

With DNNLibrary it's extremely easy to deploy your ONNX model on Android 8.1+ phone. For example, following is the Java code to deploy the MobileNet v2 in your app (please check out dnnlibrary-example for detail):

ModelBuilder modelBuilder = new ModelBuilder();
Model model = modelBuilder.readFile(getAssets(), "mobilenetv2.daq")
                        // the following line will allow fp16 on supported devices, bringing speed boost. It is only available on Android P, see https://www.anandtech.com/show/13503/the-mate-20-mate-20-pro-review/4 for a detailed benchmark
                        // .allowFp16(true)
                        .setOutput("mobilenetv20_output_pred_fwd"); // The output name is from the onnx model
                        .compile(ModelBuilder.PREFERENCE_FAST_SINGLE_ANSWER);

float[] result = model.predict(inputData);

Only five lines! And the daq model file is got from the pretrained onnx model using onnx2daq.

Convert the model

If you are a Linux user

We provide precomplied AppImage of onnx2daq, our model conversion tool. AppImage is a program format that runs on almost all Linux system. Just download the onnx2daq.AppImage from releases, and make it executable by

chmod +x onnx2daq.AppImage

then directly use it. The usage is in the following "Usage of onnx2daq".

If you are a Windows or Mac user

You need to build onnx2daq from source.

Clone this repo and submodules:

git clone --recursive https://github.com/JDAI-CV/DNNLibrary

After cloning step listed in Preparation section, run

mkdir build
cd build
cmake ..
cmake --build .

Now onnx2daq is in tools/onnx2daq directory.

Usage of onnx2daq

path_of_onnx2daq onnx_model output_filename

For example, if you are a Linux user and have a model named "mobilenetv2.onnx" in your current directory,

./onnx2daq.AppImage mobilenetv2.onnx mobilenetv2.daq

For 8-bit quantization, please check out our wiki

Usage

If you are an Android app developer and want it to work out of the box

Welcome! It has been published on jcenter.

Just add

implementation 'me.daquexian:dnnlibrary:replace_me_with_the_latest_version'

in your app's build.gradle's dependencies section.

The lastest version can be found in the following badge:

Download

If you are an c++ developer and don't care about Android app

We use CMake as the build system. So you can build it as most C++ projects, the only difference is that you need Android NDK, r17b or higher NDK is necessary :

mkdir build && cd build
cmake -DCMAKE_SYSTEM_NAME=Android -DCMAKE_TOOLCHAIN_FILE=path_of_android_ndk/build/cmake/android.toolchain.cmake -DANDROID_CPP_FEATURES=exceptions -DANDROID_PLATFORM=replace_me_with_android-28_or_android-27 -DANDROID_ABI=arm64-v8a 
cmake --build .

then you will get binary files.

But TensorFlow Lite also supports NNAPI...

Yes, but its support for NNAPI is far from perfect. For example, dilated convolution (which is widely used in segmentation) are not supported, prelu is also not supported.

What's more, only the TensorFlow models can easily get converted to TensorFlow Lite model. Since NNAPI is independent of any frameworks, we support ONNX, a framework-independent model format.

_ TF Lite DNNLibrary
Supported Model Format TensorFlow ONNX
Dilated Convolution โŒ โœ”๏ธ
Ease of Use โŒ
(Bazel build system,
not friendly to Android developers)
โœ”๏ธ
Quantization โœ”๏ธ โœ”๏ธ
(since 0.6.10)

However we are also far from maturity comparing to TF Lite. At least we are an another choice if you want to enjoy the power of NNAPI :)

Benchmark

We benchmarked DNNLibrary against two popular frameworks, NCNN and MNN. DNNLibrary shows promising results on three devices. (Note: GoogleNet fails to convert on MNN so the corresponding latency is blank.)

Benchmark on RK3399 Benchmark on OnePlus 6T Benchmark on Huawei Honor V10

More benchmark is welcome!

About caffe model support

The old DNNLibrary supports caffe model by dnntools, however, it is not supported directly now, the models generated by dnntools are not usable, too. Please use a convert tool like MMdnn to convert the caffe model to the ONNX model, then convert it to daq using onnx2daq.

More Repositories

1

fast-reid

SOTA Re-identification Methods and Toolbox
Python
3,377
star
2

FaceX-Zoo

A PyTorch Toolbox for Face Recognition
Python
1,863
star
3

dabnn

dabnn is an accelerated binary neural networks inference framework for mobile platform
C++
767
star
4

DCL

Destruction and Construction Learning for Fine-grained Image Recognition
Python
585
star
5

centerX

This repo is implemented based on detectron2 and centernet
Python
554
star
6

CoTNet

This is an official implementation for "Contextual Transformer Networks for Visual Recognition".
Python
512
star
7

VeRidataset

This is the project page for veri dataset which is a large scale image dataset for vehicle re-identification in urban traffic surveillance.
MATLAB
397
star
8

image-captioning

Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]
Python
269
star
9

lapa-dataset

A large-scale dataset for face parsing (AAAI2020)
258
star
10

Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving

Virtural try-on under arbitrary poses
Python
217
star
11

Partial-Person-ReID

Python
168
star
12

FADA

(ECCV 2020) Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation
Python
140
star
13

DSD-SATN

ICCV19: Official code of Human Mesh Recovery from Monocular Images via a Skeleton-disentangled Representation
Python
133
star
14

LIO

Look-into-Object: Self-supervised Structure Modeling for Object Recognition (CVPR 2020)
Jupyter Notebook
113
star
15

PGPT

Implementation of โ€˜Pose-Guided Tracking-by-Detection: Robust Multi-Person Pose Trackingโ€™ [TMM 2020]
Python
47
star
16

CM-NAS

CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)
Python
46
star
17

CoTNet-ObjectDetection-InstanceSegmentation

Python
33
star
18

dabnn-example

Android demo for dabnn
Java
19
star
19

atlasWrapper

C++
8
star